Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 254-260    DOI: 10.11902/1005.4537.2016.019
  本期目录 | 过刊浏览 | 高级检索 |
碳纳米管含量对环氧树脂涂层性能的影响研究
张娟(),刘自强,冯涛,温世峰,陈瑞卿
西北工业大学力学与土木建筑学院先进材料测试中心 西安 710129
Effect of Carbon Nanotube on Properties of Epoxy Coating
Juan ZHANG(),Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN
Advanced Material Test Center, School of Mechanics, Civil & Architecture, Northwestern Polytechnical University, Xi'an 710129, China
下载:  HTML  PDF(3069KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

以环氧树脂为基料,氨基硅烷为固化剂,气相SiO2为分散助剂,碳化二亚胺为改性助剂,制备了不同碳纳米管含量的环氧树脂涂层。采用拉拔法测附着力,球盘磨损测耐磨性,电化学和丝状腐蚀测耐蚀性,全面评价了碳纳米管含量对环氧树脂涂层性能的影响。结果表明:碳纳米管含量为2% (质量分数) 时就能显著提高环氧树脂涂层的附着力、耐磨性和耐蚀性,同时增强涂层的导电性。当碳纳米管含量为5%和7%时,涂层的附着力和耐磨性进一步提高;当碳纳米管含量为10%时,涂层的附着力和耐磨性开始略微下降,但耐蚀性和导电性达到最佳状态。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张娟
刘自强
冯涛
温世峰
陈瑞卿
关键词:  碳纳米管  环氧树脂涂层  附着力  摩擦  腐蚀  电化学阻抗谱    
Abstract: 

Epoxy coatings with different mass fraction of carbon nanotube (CNT) is prepared with epoxy as matrix, amine silane as curing agent, fumed silica as disperse dispersant, and carbodiimide as modifying agent. The effect of CNT amount on properties of epoxy coating is overall evaluated by means of pull-off adhesion test, ball-on-disk ear test, electrochemical impedance spectroscopy (EIS) and filiform corrosion test. The results show that, the adhesion strength, abrasion resistance and corrosion resistance are improved remarkable for the epoxy coating with 2% (mass fraction) of CNT in comparison to that without CNT addition. All the above mentioned properties are further improved for the epoxy coating with 5% and 7% of CNT. Furthermore, when the epoxy coating with the addition of CNT is up to 10%, of which the adhesion strength and abrasion resistance decreased, while the corrosion resistance and conductivity reach the optimum.

Key words:  carbon nanotube    epoxy coating    adhesion    friction    corrosion    EIS
收稿日期:  2016-01-30                出版日期:  2017-07-04      发布日期:  2017-07-04      期的出版日期:  2017-07-04
基金资助: 国家自然科学基金 (51405391和51402238),中央高校基本科研业务费专项资金(3102015ZY034,3102015ZY033和3102015ZY032) 及陕西省自然科学基础研究计划项目 (2014JQ1005)
引用本文:    
张娟,刘自强,冯涛,温世峰,陈瑞卿. 碳纳米管含量对环氧树脂涂层性能的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 254-260.
链接本文:  
http://www.jcscp.org/CN/10.11902/1005.4537.2016.019  或          http://www.jcscp.org/CN/Y2017/V37/I3/254
图1  碳纳米管含量对环氧树脂涂层附着力的影响
Specimen CNT contentmass fraction / % Epoxyg Amine silaneg
A 0 80.0 20.0
B 2 78.4 19.6
C 5 75.9 19.1
D 7 74.3 18.7
E 10 71.8 18.2
表1  不同含量碳纳米管的涂料配比
图2  碳纳米管含量对环氧树脂涂层耐磨性的影响
图3  不同碳纳米管含量环氧树脂涂层阻抗模值比较
图4  不同CNT含量环氧树脂涂层在3.5%NaCl溶液中浸泡不同时间后的Bode图拟合曲线
图5  碳纳米管环氧树脂涂层丝状腐蚀不同时间的表面形貌
图6  碳纳米管环氧树脂涂层丝状腐蚀90 d后胶带剥离状态
[1] Jurn Y N, Malek M F, Liu W W, et al.Review-coating methods of carbon nanotubes and their potential applications [A]. 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE)[C]. Batu Ferringhi: IEEE, 2015: 118
Jurn Y N, Malek M F, Liu W W, et al.Review-coating methods of carbon nanotubes and their potential applications [A]. 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE)[C]. Batu Ferringhi: IEEE, 2015: 118
[2] Alishahi M, Monirvaghefi S M, Saatchi A.The effect of the carbon nanotube content on the corrosion behaviour of Ni-P-CNT composite coating[J]. Int. J. ISSI, 2012, 9: 1
Alishahi M, Monirvaghefi S M, Saatchi A.The effect of the carbon nanotube content on the corrosion behaviour of Ni-P-CNT composite coating[J]. Int. J. ISSI, 2012, 9: 1
[3] Montazeri A, Montazeri N.Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content[J]. Mater. Des., 2011, 32: 2301
Montazeri A, Montazeri N.Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content[J]. Mater. Des., 2011, 32: 2301
[4] Ma P, Siddiqui N A, Marom G, et al.Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Compos. Pt. A: Appl. Sci. Manuf., 2010, 41: 1345
Ma P, Siddiqui N A, Marom G, et al.Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Compos. Pt. A: Appl. Sci. Manuf., 2010, 41: 1345
[5] Moisala A, Li Q, Kinloch I A, Windle A H.Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites[J]. Compos. Sci. Technol., 2006, 66: 1285
Moisala A, Li Q, Kinloch I A, Windle A H.Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites[J]. Compos. Sci. Technol., 2006, 66: 1285
[6] Martin C A, Sandler J K W, Windle A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer, 2005, 46: 877
[7] Li J, Ma P C, Chow W S, et al.Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes[J]. Adv. Funct. Mater., 2007, 17(16): 3207
[6] Martin C A, Sandler J K W, Windle A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer, 2005, 46: 877
[8] Sandler J K W, Kirk J E, Kinloch I A, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites[J]. Polymer, 2003, 44: 5893
[7] Li J, Ma P C, Chow W S, et al.Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes[J]. Adv. Funct. Mater., 2007, 17(16): 3207
[9] Husain A, Al-Bahar S, Chakkamalayath J, et al.Differential scanning calorimetry and optical photo microscopy examination for the analysis of failure of fusion bonded powder epoxy internal coating[J]. Eng. Fail. Analy., 2015, 56: 375
[10] Khun N W, Troconis B C, Frankel G S.Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3[J]. Prog. Org. Coat., 2014, 77: 72
[8] Sandler J K W, Kirk J E, Kinloch I A, et al. Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites[J]. Polymer, 2003, 44: 5893
[11] Deyab M A.Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell[J]. J. Power Sour., 2014, 268: 50
[9] Husain A, Al-Bahar S, Chakkamalayath J, et al.Differential scanning calorimetry and optical photo microscopy examination for the analysis of failure of fusion bonded powder epoxy internal coating[J]. Eng. Fail. Analy., 2015, 56: 375
[12] Yang K, Gu M Y, Jin Y P.Cure behavior and thermal stability analysis of multiwalled carbon nanotube/epoxy resin nanocomposites[J]. J. Appl. Polym. Sci., 2008, 110: 2980
[10] Khun N W, Troconis B C, Frankel G S.Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3[J]. Prog. Org. Coat., 2014, 77: 72
[13] Gong J, Niu R, Wen X, et al.Synergistic effect of carbon fibers and carbon nanotubes on improving thermal stability and flame retardancy of polypropylene: A combination of a physical network and chemical crosslinking[J]. RSC Adv., 2015, 5: 5484
[11] Deyab M A.Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell[J]. J. Power Sour., 2014, 268: 50
[14] Peng C Z.The effect of surface coating of CNTs on the mechanical properties of CF-filled HDPE composites[J]. Surf. Interface Anal., 2015, 47: 357
[12] Yang K, Gu M Y, Jin Y P.Cure behavior and thermal stability analysis of multiwalled carbon nanotube/epoxy resin nanocomposites[J]. J. Appl. Polym. Sci., 2008, 110: 2980
[15] Cheng K, Yang E, Chi Y L, et al.Fine-tuned polymer Nano-composite coatings for use in geothermal plants [A]. ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems[C]. Scottsdale: ASME, 2011: 713
[13] Gong J, Niu R, Wen X, et al.Synergistic effect of carbon fibers and carbon nanotubes on improving thermal stability and flame retardancy of polypropylene: A combination of a physical network and chemical crosslinking[J]. RSC Adv., 2015, 5: 5484
[14] Peng C Z.The effect of surface coating of CNTs on the mechanical properties of CF-filled HDPE composites[J]. Surf. Interface Anal., 2015, 47: 357
[1] 陈洁净,鞠虹,孙灿,李霞,刘雲飞. 电化学测试技术在垢下腐蚀中的应用[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.
[2] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[3] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[4] 陈磊,裴志亮,肖金泉,宫骏,孙超. 磁过滤电弧离子镀制备TiAlN涂层的结构与性能表征[J]. 中国腐蚀与防护学报, 2017, 37(3): 241-246.
[5] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[6] 刘艳洁,王振尧,王彬彬,曹岩,霍阳,柯伟. 实时监测技术研究薄液膜下电偶腐蚀的机理[J]. 中国腐蚀与防护学报, 2017, 37(3): 261-266.
[7] 戴芸,刘胜胆,邓运来,张新明. 7020铝合金在3.5%NaCl溶液中的点蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[8] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[9] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[10] 朱明,余勇,张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
[11] 孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[12] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[13] 程庆利,陶彬,刘栓,刘全桢,张卫华,田松柏,王立平. 原油沉积水对Q235B碳钢的腐蚀影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 126-134.
[14] 张康南,吴明,谢飞,王丹,伞宇曦,江峰. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.
[15] 徐致孝,周和荣,姚望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed