Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 233-240    DOI: 10.11902/1005.4537.2016.017
  本期目录 | 过刊浏览 | 高级检索 |
混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究
任继栋,高荣杰(),张宇,刘勇,丁甜
中国海洋大学材料科学与工程研究院 青岛 266100
Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties
Jidong REN,Rongjie GAO(),Yu ZHANG,Yong LIU,Tian DING
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
下载:  HTML  PDF(7630KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

通过酸性溶液对X80管线钢表面进行化学刻蚀,形成具有一定结构的微观粗糙形貌;然后通过低表面能物质十七氟癸基三乙氧基硅烷的修饰,降低钢材基底的表面能,从而成功地制备出超疏水疏油的双疏功能表面。研究了酸性刻蚀和氟化处理对表面形貌及其润湿性的影响,并通过电化学测试研究了双疏表面的耐蚀性能。结果表明:经过4 h的酸性刻蚀与氟化处理,所制备的超疏水疏油表面与去离子水,丙三醇,乙二醇和十六烷的接触角分别达到161°,156°,151.5°和146°,实现了超疏水与疏油的双疏效果。相比较未经处理的X80管线钢试样,双疏表面的腐蚀电位发生了正向移动,而腐蚀电流密度降低了两个数量级,说明双疏试样耐腐蚀性能得到了显著提高。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任继栋
高荣杰
张宇
刘勇
丁甜
关键词:  X80管线钢  混酸刻蚀  氟化处理  超疏水疏油  耐蚀性    
Abstract: 

Pipeline steel has been widely used in modern industry such as the transportation of natural gas and oil. However, its service life is mainly affected by the corrosion because of its hydrophilic and oleophilic properties. In this study, the surface of X80 pipeline steel was converted to be of super-hydrophobicity and oleophobicity by acid etching and fluoride modification. The steel was first etched by a mixed acid solution to roughen its surface, and then modified with a kind of low surface energy material, 1H, 1H, 2H, 2H-Perfluorodecyltriethoxysilane. The fluoride modification can reduce the surface energy, which is an essential step to prepare the amphiphobic surface. The influence of acid etching and modification on the morphology and the wetting behavior of the modified surface was characterized and the corrosion behavior of the amphiphobic surface was studied by potentiodynamic scanning. The result showed that the modified amphiphobic surface exhibits excellent both of hydrophobicity and oleophobicity, for substances such as water, glycerin and ethylene glycol, as well as hexadecane. After 4 h etching and fluoride modification, the contact angles of the modified steel with deionized water, glycerin, ethylene glycol and hexadecane were 161°, 156°, 151.5° and 146° respectively. The modified surface can enhance the corrosion resistance of the pipeline steel and such amphiphobic surface can be easily repaired.

Key words:  X80 pipeline steel    acid etching    fluoroalkyl silane    amphiphobicity    anti-corrosion
收稿日期:  2016-01-25                出版日期:  2017-07-04      发布日期:  2017-07-04      期的出版日期:  2017-07-04
引用本文:    
任继栋,高荣杰,张宇,刘勇,丁甜. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
Jidong REN,Rongjie GAO,Yu ZHANG,Yong LIU,Tian DING. Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 233-240.
链接本文:  
http://www.jcscp.org/CN/10.11902/1005.4537.2016.017  或          http://www.jcscp.org/CN/Y2017/V37/I3/233
图1  酸性刻蚀4 h后管线钢表面形貌的SEM像
Liquid Surface tension / mNm-1 / 20° CA / °
Untreated Treated
Water 72.8 48.0 161.0
Glycerol 63.6 45.5 156.0
Ethylene glycol 47.7 41.0 151.5
Hexadecane 25.7 1.0 146.0
表1  不同表面张力的液体与不同表面状态的X80管线钢的接触角
图2  4种液体在X80管线钢原始表面以及双疏表面接触角的变化及液滴在双疏表面接触角的宏观照片
图3  酸性刻蚀前后X80管线钢的XRD谱
图4  X80管线钢经酸性刻蚀和氟化处理后表面的EDS分析结果,氟化处理后表面的XPS全谱和C1s的精细谱
图5  原始试样和双疏表面试样在3.5%NaCl溶液中浸泡40 min,2 h和4 h后的动电位极化曲线及双疏试样浸泡4 h后经再次氟化处理后的极化曲线
Sample lg (Icorr / Acm-2) Ecorr / V Icorr / Acm-2
X80 steel / 40 min -2.7623 -0.693 1.73×10-3
Amphiphobic surface / 40 min -4.3860 -0.290 4.11×10-5
Amphiphobic surface / 2 h -3.1105 -0.537 7.75×10-4
Amphiphobic surface /4 h -2.2495 -0.720 5.63×10-3
Remodified surface -4.7448 -0.304 1.80×10-5
表2  极化曲线的电化学拟合参数
图6  X80管线钢在3.5%NaCl溶液中浸泡不同时间后的SEM像
图7  具有双疏表面的试样在3.5%NaCl溶液中浸泡2,8,16和24 h后表面的SEM像
[1] Liu K S, Tian Y, Jiang L.Bio-inspired superoleophobic and smart materials: Design, fabrication, and application[J]. Prog. Mater. Sci., 2013, 58: 503
Liu K S, Tian Y, Jiang L.Bio-inspired superoleophobic and smart materials: Design, fabrication, and application[J]. Prog. Mater. Sci., 2013, 58: 503
[2] Barthwal S, Lim S H.Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness[J]. Appl. Surf. Sci., 2015, 328: 296
Barthwal S, Lim S H.Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness[J]. Appl. Surf. Sci., 2015, 328: 296
[3] Genzer J, Efimenko K.Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science, 2000, 290: 2130
Genzer J, Efimenko K.Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers[J]. Science, 2000, 290: 2130
[4] Yoshimitsu Z, Nakajima A, Watanabe T, et al.Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18: 5818
Yoshimitsu Z, Nakajima A, Watanabe T, et al.Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18: 5818
[5] Singh S, Houston J, van Swol F V, Brinker C J. Superhydrophobicity: Drying transition of confined water[J]. Nature, 2006, 442: 526
Singh S, Houston J, van Swol F V, Brinker C J. Superhydrophobicity: Drying transition of confined water[J]. Nature, 2006, 442: 526
[6] Gao X F, Yao X, Jiang L.Effects of rugged nanoprotrusions on the surface hydrophobicity and water adhesion of anisotropic micropatterns[J]. Langmuir, 2007, 23: 4886
Gao X F, Yao X, Jiang L.Effects of rugged nanoprotrusions on the surface hydrophobicity and water adhesion of anisotropic micropatterns[J]. Langmuir, 2007, 23: 4886
[7] Deng X, Mammen L, Butt H J, et al.Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335: 67
Deng X, Mammen L, Butt H J, et al.Candle soot as a template for a transparent robust superamphiphobic coating[J]. Science, 2012, 335: 67
[8] Tuteja A, Choi W, Ma M L, et al.Designing superoleophobic surfaces[J]. Science, 2007, 318: 1618
Tuteja A, Choi W, Ma M L, et al.Designing superoleophobic surfaces[J]. Science, 2007, 318: 1618
[9] Blossey R.Self-cleaning surfaces—virtual realities[J]. Nat. Mater., 2003, 2: 301
Blossey R.Self-cleaning surfaces—virtual realities[J]. Nat. Mater., 2003, 2: 301
[10] Xiu Y H, Zhu L B, Hess D W, et al.Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity[J]. Nano Lett., 2007, 7: 3388
Xiu Y H, Zhu L B, Hess D W, et al.Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity[J]. Nano Lett., 2007, 7: 3388
[11] Yuan Z Q, Xiao J Y, Wang C Q, et al.Preparation of a superamphiphobic surface on a common cast iron substrate[J]. J. Coat. Technol. Res., 2011, 8: 773
Yuan Z Q, Xiao J Y, Wang C Q, et al.Preparation of a superamphiphobic surface on a common cast iron substrate[J]. J. Coat. Technol. Res., 2011, 8: 773
[12] Li J, Liu X H, Ye Y P, et al.Fabrication of superhydrophobic CuO surfaces with tunable water adhesion[J]. J. Phys. Chem., 2011, 115C: 4726
Li J, Liu X H, Ye Y P, et al.Fabrication of superhydrophobic CuO surfaces with tunable water adhesion[J]. J. Phys. Chem., 2011, 115C: 4726
[13] Qiu R, Zhang D, Wang P.Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition[J]. Corros. Sci., 2013, 66: 350
Qiu R, Zhang D, Wang P.Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition[J]. Corros. Sci., 2013, 66: 350
[14] Liu C S, Su F H, Liang J Z.Facile fabrication of a robust and corrosion resistant superhydrophobic aluminum alloy surface by a novel method[J]. RSC Adv., 2014, 4: 55556
Liu C S, Su F H, Liang J Z.Facile fabrication of a robust and corrosion resistant superhydrophobic aluminum alloy surface by a novel method[J]. RSC Adv., 2014, 4: 55556
[15] Badre C, Pauporté T, Turmine M, et al.Tailoring the wetting behavior of zinc oxide films by using alkylsilane self-assembled monolayers[J]. Superlattices Microstruct., 2007, 42: 99
Badre C, Pauporté T, Turmine M, et al.Tailoring the wetting behavior of zinc oxide films by using alkylsilane self-assembled monolayers[J]. Superlattices Microstruct., 2007, 42: 99
[16] Sun T L, Feng L, Gao X F, et al.Bioinspired surfaces with special wettability[J]. Accounts Chem. Res., 2005, 38: 644
Sun T L, Feng L, Gao X F, et al.Bioinspired surfaces with special wettability[J]. Accounts Chem. Res., 2005, 38: 644
[17] Chen X H, Kong L H, Dong D, et al.Fabrication of functionalized copper compound hierarchical structure with bionic superhydrophobic properties[J]. J. Phys. Chem., 2009, 113C: 5396
Chen X H, Kong L H, Dong D, et al.Fabrication of functionalized copper compound hierarchical structure with bionic superhydrophobic properties[J]. J. Phys. Chem., 2009, 113C: 5396
[18] Nosonovsky M.Multiscale roughness and stability of superhydrophobic biomimetic interfaces[J]. Langmuir, 2007, 23: 3157
Nosonovsky M.Multiscale roughness and stability of superhydrophobic biomimetic interfaces[J]. Langmuir, 2007, 23: 3157
[19] Jin C D, Li J P, Han S J, et al.A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface[J]. Appl. Surf. Sci., 2014, 320: 322
Jin C D, Li J P, Han S J, et al.A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface[J]. Appl. Surf. Sci., 2014, 320: 322
[20] Nishino T, Meguro M, Nakamae K, et al.The lowest surface free energy based on-CF3 alignment[J]. Langmuir, 1999, 15: 4321
Nishino T, Meguro M, Nakamae K, et al.The lowest surface free energy based on-CF3 alignment[J]. Langmuir, 1999, 15: 4321
[21] Wu X D, Zheng L J, Wu D.Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route[J]. Langmuir, 2005, 21: 2665
Wu X D, Zheng L J, Wu D.Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route[J]. Langmuir, 2005, 21: 2665
[22] Tian H, Yang T S, Chen Y Q.Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid[J]. Appl. Surf. Sci., 2009, 255: 4289
Tian H, Yang T S, Chen Y Q.Fabrication and characterization of superhydrophobic thin films based on TEOS/RF hybrid[J]. Appl. Surf. Sci., 2009, 255: 4289
[23] Li H J, Wang X B, Song Y L, et al.Super-“amphiphobic” aligned carbon nanotube films[J]. Angew. Chem.-Int. Edit., 2001, 40: 1743
Li H J, Wang X B, Song Y L, et al.Super-“amphiphobic” aligned carbon nanotube films[J]. Angew. Chem.-Int. Edit., 2001, 40: 1743
[24] Nicolas M, Guittard F, Géribaldi S.Synthesis of stable super water- and oil-repellent polythiophene films[J]. Angew. Chem.-Int. Edit., 2006, 45: 2251
Nicolas M, Guittard F, Géribaldi S.Synthesis of stable super water- and oil-repellent polythiophene films[J]. Angew. Chem.-Int. Edit., 2006, 45: 2251
[25] Feng L, Li S H, Li Y S, et al.Super-hydrophobic surfaces: From natural to artificial[J]. Adv. Mater., 2002, 14: 1857
Feng L, Li S H, Li Y S, et al.Super-hydrophobic surfaces: From natural to artificial[J]. Adv. Mater., 2002, 14: 1857
[26] Zhu X T, Zhang Z Z, Xu X H, et al.Facile fabrication of a superamphiphobic surface on the copper substrate[J]. J. Colloid Interface Sci., 2012, 367: 443
Zhu X T, Zhang Z Z, Xu X H, et al.Facile fabrication of a superamphiphobic surface on the copper substrate[J]. J. Colloid Interface Sci., 2012, 367: 443
[27] Li H, Rong S R, Liu E Y, et al.Fabrication and characterization of bionic amphiphobic functional surface on X70 pipeline steel[J]. Microsyst. Technol., 2015, 21: 2003
Li H, Rong S R, Liu E Y, et al.Fabrication and characterization of bionic amphiphobic functional surface on X70 pipeline steel[J]. Microsyst. Technol., 2015, 21: 2003
[28] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546
Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans. Faraday Soc., 1944, 40: 546
[29] Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988
Wenzel R N.Resistance of solid surfaces to wetting by water[J]. Ind. Eng. Chem., 1936, 28: 988
[30] Gao L C, McCarthy T J. Ionic liquids are useful contact angle probe fluids[J]. J. Am. Chem. Soc., 2007, 129: 3804
Gao L C, McCarthy T J. Ionic liquids are useful contact angle probe fluids[J]. J. Am. Chem. Soc., 2007, 129: 3804
[31] Xie Q, Xu J, Feng L, et al.Facile creation of a super-amphiphobic coating surface with bionic microstructure[J]. Adv. Mater., 2004, 16: 302
Xie Q, Xu J, Feng L, et al.Facile creation of a super-amphiphobic coating surface with bionic microstructure[J]. Adv. Mater., 2004, 16: 302
[32] Wang P, Zhang D, Qiu R, et al.Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere[J]. Corros. Sci., 2013, 69: 23
Wang P, Zhang D, Qiu R, et al.Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere[J]. Corros. Sci., 2013, 69: 23
[33] Song J L, Xu W J, Lu Y, et al.Fabrication of superhydrophobic surfaces on Mg alloy substrates via primary cell corrosion and fluoroalkylsilane modification[J]. Mater. Corros., 2013, 64: 979
Song J L, Xu W J, Lu Y, et al.Fabrication of superhydrophobic surfaces on Mg alloy substrates via primary cell corrosion and fluoroalkylsilane modification[J]. Mater. Corros., 2013, 64: 979
[1] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[2] 张飘飘,杨忠民,陈颖,王慧敏. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 93-100.
[3] 张心华,周仲康,徐群杰,陈晓春,闫爱军,廖强强,葛红花. 富镍导电涂层在模拟海水中的耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 189-194.
[4] 张康南,吴明,谢飞,王丹,伞宇曦,江峰. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.
[5] 沈杰,刘卫,王铁钢,潘太军. 304不锈钢双极板表面TiN涂层的腐蚀和导电行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 63-68.
[6] 徐相英,葛芳芳,李朋,舒瑞,黄峰,李谋成. 非晶Ti-B基涂层的力学和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 573-579.
[7] 丁诗炳,项腾飞,李澄,郑顺丽,王绮,杜梦萍. 两步法制备超疏水耐蚀镍镀层[J]. 中国腐蚀与防护学报, 2016, 36(5): 450-456.
[8] 周琼宇,王小芬,钟庆东,王操,胡一峰. 镀液pH值对电沉积Ni-W合金镀层结构及其耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 457-462.
[9] 张弟,梁平,张云霞,史艳华,秦华. 库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[10] 刘阳,华小珍,黄晋华,崔霞,周贤良,俞应炜. SiC表面化学镀镍对SiCp/Al复合材料界面及耐蚀性影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 130-136.
[11] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[12] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[13] 张山,周丽娜,简璐,王煦. 聚苯胺/TiO2/环氧涂层的制备及耐蚀性研究[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
[14] 沈秋燕,刘宏芳,刘烈炜. 沉积硫对FeS及FeCO3膜结构及耐蚀性影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 79-86.
[15] 张宁,孙虎元,孙立娟,刘栓. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
[1] . Corrosion Properties of High Gravity Tungalloy[J]. J Chin Soc Corr Pro, 2004, 24(6): 356 -359 .
[2] Xin Ren; Huaiyu Yang; Fuhui Wang; Zhu Zhao; Yawei Shao. HIGH TEMPERATURE CORROSION BEHAVIOR OF A3 STEELIN V2O5+Na2SO4 SALTS AT 700 ℃[J]. J Chin Soc Corr Pro, 2002, 22(2): 92 -94 .
[3] Songhua Si. EFFECT OF LASER POWER ON MICROSTRUCTURES ANDWEAR PROPERTIES OF WCP/Ni METAL CERAMICS COATING[J]. J Chin Soc Corr Pro, 2004, 24(3): 183 -187 .
[4] SHI Rong LI Zhengqi WANG Xuede FAN Chaohua. CURRENT STATUS AND DEVELOPMENT OF CALENDAR LIFE OF AIRCRAFT STRUCTURE[J]. J Chin Soc Corr Pro, 2008, 28(6期): 381 -386 .
[5] Chunchun Xv; Lin Chi; Gang Hu; Jie Huang; Zise Wang. INFLUENCE OF CONCENTRATION OF HCO3- TO ANODIC REACTION OF X70 STEEL[J]. J Chin Soc Corr Pro, 2005, 25(1): 20 -24 .
[6] Hongfang Liu; Meifang Wang; Liming Xv; Xingpeng Guo. The Role of Ca2+ on the Microbiologically Induced Corrosion of Carbon Steel[J]. J Chin Soc Corr Pro, 2004, 24(1): 45 -51 .
[7] Zhang Xiaoyun; Tang Zhihui; Li Bin; Sun Zhihua; Liu Minghui. CORROSION BEHAVIOUR OF TAITANIUM ALLOYS[J]. J Chin Soc Corr Pro, 2004, 24(2): 75 -78 .
[8] Xiaojun Jin; Lixing Huo; YUfeng Zhang; Bingren Bai; Xiaowei Li; Jun Cao. Study on H2S Stress Corrosin of Welded Joint for X65 Pipeline Steel and Finite Element Numerical Analysis[J]. J Chin Soc Corr Pro, 2004, 24(1): 20 -24 .
[9] Hao Guo; Zhanpeng Lv; Guoqiang Feng; Xun Cai; Wu Yang. Predicting SCC Behavior of Austenitic Stainless Steels in High Temperature Water by Artificial Neural Network[J]. J Chin Soc Corr Pro, 2004, 24(1): 25 -28 .
[10] Runlan Yu. The Corrosion Electrochemical Study of Marmatite[J]. J Chin Soc Corr Pro, 2004, 24(4): 226 -229 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed