Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 142-147    DOI: 10.11902/1005.4537.2016.010
  研究报告 本期目录 | 过刊浏览 |
咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究
赵景茂1,2(),赵起锋1,姜瑞景1,2
1 北京化工大学材料科学与工程学院 北京 100029
2 北京化工大学 材料电化学过程与技术北京市重点实验室 北京 100029
Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment
Jingmao ZHAO1,2(),Qifeng ZHAO1,Riujing JIANG1,2
1 College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2 Beijing University of Chemical Technology, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing 100029, China
全文: PDF(1557 KB)   HTML
摘要: 

合成了4种具有不同亲水基的油酸基咪唑啉衍生物。使用接触角测试、原子力力曲线、动态失重实验和分子动力学模拟研究了它们在20#碳钢表面的亲水和疏水性以及在CO2/H2S共存环境中不同流速下对20#碳钢的缓蚀行为。结果表明:静态条件下,侧链含有两个胺基乙撑的咪唑啉的缓蚀效果最好,在缓蚀剂浓度为100 mg/L时,缓蚀率达86.8%;流速为5.5 m/s时,侧链含有3个胺基乙撑的咪唑啉的缓蚀效果最好,在缓蚀剂浓度为100 mg/L时,缓蚀率达73.6%;咪唑啉缓蚀剂的疏水性、粘附力和吸附能均随胺基乙撑数的增多而逐渐增强。

关键词 CO2/H2S咪唑啉衍生物亲水基流速接触角原子力显微镜分子动力学模拟    
Abstract

Four oleic acid-based imidazoline derivates with different hydrophilic groups were synthesized in this work. The performance of the synthesized products, such as the hydrophobicity and hydrophily, the adsorption and corrosion inhibition on the 20# carbon steel in flow CO2/H2S environment were assessed by means of measurements of contact angle, AFM force curve and mass loss, as well as molecular dynamics simulation. The results showed that under static conditions the imidazoline derivate with two amino ethylene units processes the best inhibition efficiency of 86.8% for the dosage of 100 mg/L, while under high flow rate (5.5 m/s), the inhibition efficiency of imidazoline with three amino ethylene units was the highest, i.e. 73.6% for the dosage of 100 mg/L. The hydrophobicity, adhesion force and adsorption energy of imidazolines were enhanced gradually with the increase of the number of amino ethylene unit.

Key wordsCO2/H2S    imidazoline derivate    hydrophilic group    flow velocity    contact angle    AFM    MD
收稿日期: 2016-01-10     
基金资助:国家自然科学基金 (51171013)

引用本文:

赵景茂,赵起锋,姜瑞景. 咪唑啉缓蚀剂在CO2/H2S共存体系中的构效关系研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
Jingmao ZHAO, Qifeng ZHAO, Riujing JIANG. Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 142-147.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.010      或      https://www.jcscp.org/CN/Y2017/V37/I2/142

图1  4种缓蚀剂的分子结构
Inhibitor Left / deg Right / deg Average / deg
Blank 21.8 20.0 20.9
IM 65.6 67.5 66.6
IM-2 74.4 74.0 74.2
IM-3 78.7 78.9 78.8
IM-4 86.1 86.1 86.1
表1  吸附了缓蚀剂的试样表面的接触角
图2  吸附了咪唑啉缓蚀剂的试样表面测得的力曲线
图3  20#碳钢在不同流速下的腐蚀速率
图4  4种咪唑啉缓蚀剂在不同流速下的缓蚀率
图5  不同流速下咪唑啉缓蚀剂的缓蚀率与接触角和粘附力的关系
图6  缓蚀剂分子的平衡吸附构型
Inhibitor Etotal / kJmol-1 Esurface / kJmol-1 Emolecule / kJmol-1 Eadsorption / kJmol-1
IM -4.7699862×105 -4.7677742×105 -8.9560×101 -1.3164×102
IM-2 -4.7667153×105 -4.7677742×105 2.8381×102 -1.7792×102
IM-3 -4.7674717×105 -4.7677742×105 3.3668×102 -3.0643×102
IM-4 -4.7666814×105 -4.7677742×105 4.8057×102 -3.7129×102
表2  缓蚀剂分子在Fe基体表面的吸附能
[1] Chen W, Pan Y Q, Mei P, et al.Progress in corrosion and inhibition technology in CO2/H2S environment[J]. Environ. Prot. Oil Gas Fields, 2007, 17(3): 1
[1] (陈武, 潘阳秋, 梅平等. CO2/H2S共存腐蚀与缓蚀技术研究进展[J]. 油气田环境保护, 2007, 17(3): 1)
[2] Liu M, Wang Y.Corrosion factor research of gas pipeline in gas field containing sulfur[J]. Pipeline Tech. Equip., 2011, (4): 43
[2] (刘明, 王毅. 高含硫气田集输管线腐蚀因素分析[J]. 管道技术与设备, 2011, (4): 43)
[3] Hu S Q.Design and synthesis of corrosion inhibitors in oil and gas fields with high H2S and CO2 [D]. Qingdao: China University of Petroleum (East China) , 2010
[3] (胡松青. 高含H2S、CO2油气田缓蚀剂的设计与合成 [D]. 青岛: 中国石油大学 (华东) , 2010)
[4] Zhang Q, Li Q A, Wen J B, et al.Progress in research on CO2/H2S corrosion of tubular goods[J]. Corros. Prot., 2003, 24: 277
[4] (张清, 李全安, 文九巴等. CO2/H2S对油气管材的腐蚀规律及研究进展[J]. 腐蚀与防护, 2003, 24: 277)
[5] Gao Q Y, Mei P, Chen W, et al.Development on synthesis and application of imidazoline corrosion inhibitor[J]. Chem. Eng., 2006, 20(5): 18
[5] (高秋英, 梅平, 陈武等. 咪唑啉类缓蚀剂的合成及应用研究进展[J]. 化学工程师, 2006, 20(5): 18)
[6] Edwards A, Osborne C, Webster S, et al.Mechanistic studies of the corrosion inhibitor oleic imidazoline[J]. Corros. Sci., 1994, 36: 315
[7] Liu X, Zheng Y G.Inhibition behavior of two imidazoline-based inhibitors with different hydrophilic groups in single liquid phase and liquid/particle two-phase flow[J]. Acta Phys.-Chim. Sin., 2009, 25: 713
[7] (刘瑕, 郑玉贵. 流动条件下两种不同亲水基团咪唑啉型缓蚀剂的缓蚀性能[J]. 物理化学学报, 2009, 25: 713)
[8] Zhang J, Du M, Yu H H, et al.Effect of molecular structure of imidazoline inhibitors on growth and decay laws of films formed on Q235 steel[J]. Acta Phys.-Chim. Sin., 2009, 25: 525
[8] (张静, 杜敏, 于会华等. 分子结构对咪唑啉缓蚀剂膜在Q235钢表面生长和衰减规律的影响[J]. 物理化学学报, 2009, 25: 525)
[9] Hu S Q, Jia X L, Hu J C, et al.Quantum chemical analysis on molecular structures and inhibitive properties of imidazoline inhibitors[J]. J. China Univ. Pet.,(Nat. Sci. Ed), 2011, 35(1): 146
[9] (胡松青, 贾晓林, 胡建春等. 咪唑啉缓蚀剂分子结构与缓蚀性能的量子化学分析[J]. 中国石油大学学报 (自然科学版), 2011, 35(1): 146)
[10] Ochoa N, Moran F, Pébère N, et al.Influence of flow on the corrosion inhibition of carbon steel by fatty amines in association with phosphonocarboxylic acid salts[J]. Corros. Sci., 2005, 47: 593
[11] Srisuwan N, Ochoa N, Pébère N, et al.Variation of carbon steel corrosion rate with flow conditions in the presence of an inhibitive formulation[J]. Corros. Sci., 2008, 50: 1245
[12] Zhao G X, Lv X H, Han Y.Effect of flow rate on CO2 corrosion behavior of P110 steel[J]. J. Mater. Eng., 2008, (8): 5
[12] (赵国仙, 吕祥鸿, 韩勇. 流速对P110钢腐蚀行为的影响[J]. 材料工程, 2008, (8): 5)
[13] Ortega-Toledo D M, Gonzalez-Rodriguez J G, Casales M, et al. CO2 corrosion inhibition of X-120 pipeline steel by a modified imidazoline under flow conditions[J]. Corros. Sci., 2011, 53: 3780
[14] Zhang H H, Pang X L, Zhou M, et al.The behavior of pre-corrosion effect on the performance of imidazoline-based inhibitor in 3wt.%NaCl solution saturated with CO2[J]. Appl. Surf. Sci., 2015, 356: 63
[15] Zhang J.Theoretical investigation on corrosion inhibition mechanism of imidazoline inhibitors [D]. Qingdao: China University of Petroleum (East China), 2008
[15] (张军. 咪唑啉类缓蚀剂缓蚀机理的理论研究 [D]. 青岛: 中国石油大学 (华东) , 2008)
[16] Chen Z Y.Investigation on inhibition mechanism based on AFM and electrochemical methods [D]. Wuhan: Huazhong University of Science and Technology, 2010
[16] (陈振宇. 基于原子力显微镜和电化学方法的缓蚀剂机理研究 [D]. 武汉: 华中科技大学, 2010)
[17] Qu J E, Guo X P, Huang J Y, et al.Study on adsorption behavior of inhibitors by electrochemical methods and AFM force curves[J]. J. Instrum. Anal., 2007, 26: 110
[17] (屈钧娥, 郭兴蓬, 黄金营等. 缓蚀剂吸附行为的电化学及AFM力曲线研究[J]. 分析测试学报, 2007, 26: 110)
[18] Jiang X, Luo S Z, Zheng Y G, et al.Study on inhibitor properties of quaternary alkynoxymethyl amine and imidazoline for N80 seamless steel in 3% NaCl saturated by CO2 [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 10
[18] (蒋秀, 骆素珍, 郑玉贵等. 炔氧甲基季胺盐和咪唑啉对N80在饱和CO2的3%NaCl溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2004, 24: 10)
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[3] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[5] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[6] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[7] 丁诗炳,项腾飞,李澄,郑顺丽,王绮,杜梦萍. 两步法制备超疏水耐蚀镍镀层[J]. 中国腐蚀与防护学报, 2016, 36(5): 450-456.
[8] 赵景茂,赵雄,姜瑞景. 在动态H2S/CO2体系中疏水链上的双键对咪唑啉衍生物缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 505-509.
[9] 刘栓, 赵霞, 陈长伟, 侯保荣, 陈建敏. 油田输油管线钢X65的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 393-399.
[10] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[11] 冯丽娟,赵康文,杨怀玉,唐囡,王福会,上官帖. 混凝土模拟液中咪唑啉衍生物与四乙烯五胺间缓蚀协同效应[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[12] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[13] 范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[14] 刘洁, 刘峥, 刘进, 谢思维. 3,5-二溴水杨醛-2-噻吩甲酰肼席夫碱缓蚀剂在油田水中对碳钢的缓蚀性能及分子动力学模拟[J]. 中国腐蚀与防护学报, 2014, 34(2): 101-111.
[15] 吴刚,耿玉凤,贾晓林,孙霜青,胡松青. 异恶唑衍生物缓蚀剂缓蚀性能的理论评价[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.