Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 135-141    DOI: 10.11902/1005.4537.2016.009
  研究报告 本期目录 | 过刊浏览 |
温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响
艾莹珺1,杜楠1(),赵晴1,黄世新1,王力强2,文庆杰2
1 南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
2 成都飞机 (集团) 有限责任公司制造工程部 成都 610092
Effect of Temperature on Initiation of Metastable Pits and Geometric Features of Stable Pits for 304 Stainless Steel
Yingjun AI1,Nan DU1(),Qing ZHAO1,Shixin HUANG1,Liqiang WANG2,Qingjie WEN2
1 National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2 Department of Manufacture Engineering, Chengdu Aircraft Lndustrial (Group) Co., Ltd., Chengdu 610092, China
全文: PDF(1892 KB)   HTML
摘要: 

采用恒电位极化、动电位极化、EIS和三维视频显微技术研究温度对304不锈钢在3.5% (质量分数) NaCl水溶液中点蚀行为和腐蚀形貌的影响。结果表明:随着温度由20 ℃升高至40 ℃,亚稳蚀孔萌生期变短,单位时间形核数目增多,平均峰值电流和平均峰值宽度增大,亚稳蚀孔数目增加导致稳态蚀孔出现几率增加。经0.15 V(vs SCE) 恒电位极化后,单个蚀孔的点蚀电流、蚀孔体积、蚀孔口径和孔深的增长速率均随温度的升高而增加;同一温度下蚀孔口径和孔深的增长速率随时间的延长略微减缓。蚀孔表面具有不完整的花边盖,盖板完整程度随温度升高而降低。

关键词 304不锈钢温度亚稳蚀孔稳态蚀孔动力学    
Abstract

Effect of temperature on pitting behavior and corrosion morphology of 304 stainless steel in 3.5%NaCl solution was studied by means of potentiostatic polarization, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and three-dimensional video microscope. The results showed that as the temperature increased from 20 ℃ to 40 ℃, the initiation period of metastable pits shortened, the number the nuclei formed per unit time increased, the average peak-current and the average peak-width (which could represent the lifetime of metastable pits) increased, therefore, the increasing number of metastable pits led to higher probability for the occurrence of stable pits. The growth rate of pitting current, pit volume, pit mouth diameter and pit depth of single pit increased with the increasing temperature by applied potential of 0.15 V(vs SCE). The growth rate of pit mouth diameter and pit depth gradully decreased with the extension of time at the same temperature. The corrosion pit was incompletely covered by lace-like corrosion products, and of which the integrity decreased with the increase of temperature.

Key words304 stainless steel    temperature    metastable pit    stable pit    dynamics
收稿日期: 2016-01-08     
基金资助:国家自然科学基金 (51561024)

引用本文:

艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
Yingjun AI, Nan DU, Qing ZHAO, Shixin HUANG, Liqiang WANG, Qingjie WEN. Effect of Temperature on Initiation of Metastable Pits and Geometric Features of Stable Pits for 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 135-141.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.009      或      https://www.jcscp.org/CN/Y2017/V37/I2/135

图1  304不锈钢在不同温度下3.5%NaCl溶液中亚稳蚀孔暂态电流随时间的变化
Temperature / ℃ t / s N I / μA τ / s
20 351.3 1 0.2 0.8
30 199.9 2 1.3 4.0
40 90.7 3 19.2 6.4
表1  不同温度下亚稳蚀孔萌生参数
图2  304不锈钢在不同温度的3.5%NaCl水溶液中的动电位极化曲线
Temperature℃ Ecorr (SCE)V IcorrnAcm-2 EbV EpV Eb-EpV
20 -0.279 9.711 0.340 0.120 0.220
30 -0.289 13.743 0.255 0.011 0.244
40 -0.284 23.693 0.230 -0.015 0.245
表2  304不锈钢在不同温度的3.5%NaCl水溶液中的极化曲线拟合结果
图3  304不锈钢在不同温度的3.5%NaCl水溶液中的Nyquist图
图4  304不锈钢在不同温度的3.5%NaCl水溶液中EIS的等效电路图
Temperature℃ RsΩcm2 Y0μSsncm-2 ndl RctMΩcm2
20 26.43 4.803 0.8667 3.962
30 18.18 5.055 0.8456 0.223
40 15.47 5.993 0.8110 0.205
表3  304不锈钢在不同温度的3.5%NaCl水溶液中EIS的拟合结果
图5  304不锈钢在不同温度下3.5%NaCl溶液中单个蚀孔点蚀电流随时间的变化
图6  304不锈钢在不同温度下3.5%NaCl溶液中单个蚀孔点蚀电流随时间变化的拟合曲线
Temperature / ℃ Surface diameter
μm
Base diameter
μm
Depth
μm
Volume
μm3
20 71.137 35.990 28.371 6.45×104
30 80.293 44.598 33.203 7.05×104
40 88.459 52.685 39.268 9.92×104
表4  不同温度下极化后单个蚀孔的几何参数
图7  304不锈钢在不同温度下3.5%NaCl溶液中单个蚀孔体积、口径和深度随时间的变化
图8  304不锈钢在不同温度下3.5%NaCl溶液中的蚀孔形貌
[1] Xiao J M.Metallography of Stainless Steel [M]. 2nd Ed. Beijing: Metallurgical Industry Press, 2006
[1] (肖纪美. 不锈钢的金属学问题 [M]. 第2版. 北京: 冶金工业出版社, 2006)
[2] Chen Y, Chen X, Liu T, et al.Effect of potential on electrochemical corrosion behavior of 316L stainless steel in borate buffer solution[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 137
[2] (陈宇, 陈旭, 刘彤等. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2015, 35: 137)
[3] Zhang Z M, Peng Q J, Wang J Q, et al.Stress corrosion cracking behavior of forged 316L stainless steel used for nuclear power plants in alkaline solution at 330 ℃[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 205
[3] (张志明, 彭青娇, 王俭秋等. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35: 205)
[4] Fang Y R, Fu C Y.Corrosion and corrosion inhibition of 304 stainless steel in acidic FeCl3 solution with applied inhibitor K2Cr2O7 and ultrasonic vibration[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 305
[4] (方玉荣, 付朝阳. 酸性FeCl3溶液中304不锈钢的超声腐蚀和缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35: 305)
[5] Zhou B S.Corrosion and Protection of Metal in Industrial Cooling Water System [M]. Beijing: Chemical Industry Press, 1993: 25
[5] (周本省. 工业冷却水系统中金属的腐蚀与防护 [M]. 北京: 化学工业出版社, 1993: 25)
[6] Liu D X.Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 119
[6] (刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 119)
[7] Ai Y J, Du N, Zhao Q, et al.Effect of gravity on pitting behavior of 304 stainless steel[J]. Corros. Prot., 2014, 35: 1182
[7] (艾莹珺, 杜楠, 赵晴等. 重力对304不锈钢点蚀行为的影响[J]. 腐蚀与防护, 2014, 35: 1182)
[8] Li H B, Jiang Z H, Yang Y, et al.Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels[J]. Int. J. Miner. Metall. Mater., 2009, 16: 517
[9] Pujar M G, Anita T, Shaikh H, et al.Use of electrochemical noise (EN) technique to study the effect of sulfate and chloride ions on passivation and pitting corrosion behavior of 316 stainless steel[J]. J. Mater. Eng. Perform., 2007, 16: 494
[10] Pardo A, Otero E, Merino M C, et al.Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels[J]. Corrosion, 2000, 56: 411
[11] Ye C, Du N, Tian W M, et al.Effect of pH on pitting corrosion process of 304 stainless steel in 3.5%NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 38
[11] (叶超, 杜楠, 田文明等. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35: 38)
[12] Wu W W, Jiang Y M, Liao J X, et al.Electrochemcial measurement of critical pitting temperature of 0Cr25Ni7Mo4, 316 and 304 stainless steels in 3.5%NaCl solution[J]. Corros. Sci. Prot. Technol., 2006, 18: 285
[12] (吴玮巍, 蒋益明, 廖家兴等. 0Cr25Ni7Mo4、316与304不锈钢临界点蚀温度研究[J]. 腐蚀科学与防护技术, 2006, 18: 285)
[13] Steensland O.Contribution to the discussion on pitting corrosion of stainless steel[J]. Anti Corros. Methods Mater., 1968, 15: 8
[14] Ernst P, Newman R C.Pit growth studies in stainless steel foils: II. Effect of temperature, chloride concentration and sulphate addition[J]. Corros. Sci., 2002, 44: 943
[15] Liang C H, Gao Y.Influence of sensibilization heat treatment on corrosion resistance of 304 stainless steel[J]. Chem. Eng. Mach., 1995, 22: 87
[15] (梁成浩, 高扬. 304不锈钢敏化热处理对耐蚀性的影响[J]. 化工机械, 1995, 22: 87)
[16] Qu Y M, Huang F, Liu J, et al.Pitting electrochemical behaviors of different microstructure X80 steel [A]. Proceedings of the Fifth National Conference on Corrosion[C]. Beijing: Chinese Society for Corrosion and Protection, 2009: 1
[16] (曲炎淼, 黄峰, 刘静等. 不同组织X80钢点蚀电化学行为研究 [A]. 第五届全国腐蚀大会论文集[C]. 北京: 中国腐蚀与防护学会, 2009: 1)
[17] Tang Y M, Zuo Y, Zhao H.The current fluctuations and accumulated pitting damage of mild steel in NaNO2-NaCl solution[J]. Appl. Surf. Sci., 2005, 243: 82
[18] Gong X Z.The behavior of metastable pitting of stainless steel and the relation between metastable pitting and stable pitting [D]. Beijing: Beijing University of Chemical Technology, 2002
[18] (龚小芝. 不锈钢亚稳态孔蚀行为及其与稳态孔蚀的关系 [D]. 北京: 北京化工大学, 2002)
[19] Sun Y W, Chen J, Piao N, et al.The effect of plasma nitriding on the corrosion resistance of X80 pipeline steel in alkaline soil simulation solution[J]. Surf. Technol., 2015, 44(2): 93
[19] (孙彦伟, 陈吉, 朴楠等. 离子渗氮对X80管线钢在碱性土壤模拟溶液中腐蚀行为的影响[J]. 表面技术, 2015, 44(2): 93)
[20] Deng B, Jiang Y M, Hao Y W, et al.The synergetic effect of chloride and fluoride on the critical pitting temperature of 316 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 30
[20] (邓博, 蒋益明, 郝允卫等. F-和Cl-对316不锈钢临界点蚀温度的协同作用[J]. 中国腐蚀与防护学报, 2008, 28: 30)
[21] Ryan M P, William D E, Chater R J, et al.Why stainless steel corrodes[J]. Nature, 2002, 415: 770
[22] Ernst P, Laycock N J, Moayed M H, et al.The mechanism of lacy cover formation in pitting[J]. Corros. Sci., 1997, 39: 1133
[1] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[5] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[6] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[8] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[9] 王帅星,杜楠,刘道新,肖金华,邓丹萍. X80钢在酸性红壤模拟液及室外红壤中的腐蚀动力学规律及相关性分析[J]. 中国腐蚀与防护学报, 2019, 39(1): 18-28.
[10] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[11] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[12] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[13] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[14] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[15] 逄旭光, 刘润青, 王文涛, 史艳华, 李飞, 梁平. 时效温度对S32750超级双相不锈钢组织和抗氢氟酸腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 519-525.