Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 117-125    DOI: 10.11902/1005.4537.2016.003
  研究报告 本期目录 | 过刊浏览 |
AZ31镁合金搅拌摩擦焊接头腐蚀行为
张子阳,王善林(),章恒瑜,柯黎明
南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding
Ziyang ZHANG,Shanlin WANG(),Hengyu ZHANG,Liming KE
National Defence Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(9336 KB)   HTML
摘要: 

系统的研究了AZ31镁合金搅拌摩擦焊焊接接头在NaCl溶液中的腐蚀行为。结果表明,AZ31镁合金搅拌摩擦焊焊缝的腐蚀电位和母材相近,而母材的腐蚀电流密度为0.45 mAcm-2,焊缝的为1.63 mAcm-2,后者是前者的近4倍。由于焊接接头的焊缝区受到晶粒尺寸及β相析出的影响,导致焊缝耐蚀性能比较差,腐蚀最先从焊缝区域产生。腐蚀初期母材的抗腐蚀能力比焊缝的抗腐蚀能力强,但当焊缝区域进入自保护状态时,母材腐蚀速率将大于焊缝区域。

关键词 AZ31镁合金搅拌摩擦焊腐蚀行为腐蚀速率    
Abstract

Weld joints of Mg-alloy AZ31 were prepared by friction stir welding, and then their corrosion behavior was assessed in NaCl solution. The results show that the free corrosion potential of the friction stir weld joint of Mg-alloy AZ31 is like that of the base metal; however, the corrosion current density of the base metal was 0.45 mAcm-2, while it was 1.63 mAcm-2 for the joint. Moreover, the corrosion resistance in weld nugget zone was the worst because of the effect of the grain size and the distribution of β phase, and the corrosion initialed in this region. In the initial corrosion stage, the corrosion resistance of the base metal was superior to that of the weld joint, but later the base metal exhibited faster corrosion rate rather than the weld joint, which may be ascribed to the occurrence of passivation of the weld joint.

Key wordsAZ31 magnesium alloy    friction stir welding    corrosion behavior    corrosion rate
收稿日期: 2016-01-05     
基金资助:国家自然科学基金 (51461031),新金属材料国家重点实验室开放基金 (2013-Z05) 和轻合金加工科学与技术国防重点实验室基金 (gf201501005)

引用本文:

张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
Ziyang ZHANG, Shanlin WANG, Hengyu ZHANG, Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 117-125.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.003      或      https://www.jcscp.org/CN/Y2017/V37/I2/117

图1  焊接用搅拌头外观图
图2  AZ31镁合金FSW接头横截面不同区域组织形貌
图3  AZ31镁合金FSW接头在不同浓度的NaCl溶液中腐蚀速率随浸泡时间的变化
图4  焊接接头在不同浓度的NaCl溶液中浸泡10 min后的腐蚀形貌
图5  焊接接头在不同浓度的NaCl溶液中浸泡1 h后的腐蚀形貌
图6  焊接接头在不同浓度的NaCl溶液中浸泡24 h后的腐蚀形貌
图7  焊接接头在不同浓度的NaCl溶液中浸泡96 h后的腐蚀形貌
图8  焊接接头上表面浸泡不同时间后沉积物的SEM像及EDS结果
图9  接头横截面在3.5%NaCl溶液中浸泡不同时间后的腐蚀形貌
图10  接头横截面在3.5%NaCl溶液浸泡1 h后的腐蚀形貌
图11  AZ31镁合金母材和FSW焊缝区的XRD谱
图12  焊缝动电位扫描Tafel极化曲线
[1] Tong J G, Ren X P.Progress in friction stir welding of magnesium alloys[J]. Light Alloy Fabric. Technol., 2008, 36(7): 5
[1] (佟建国, 任学平. 镁合金搅拌摩擦焊接技术的研究进展[J]. 轻合金加工技术, 2008, 36(7): 5)
[2] Zhang Y J, Ding C G, Quan G F, et al.Microstructure and impact properties of AZ31 magnesium alloy FSW joint[J]. Hot Work. Technol., 2009, 38(3): 106
[2] (张彦军, 丁成钢, 权高峰等. AZ31镁合金搅拌摩擦焊接头组织和冲击性能分析[J]. 热加工工艺, 2009, 38(3): 106)
[3] Kannan M B, Dietzel W, Zeng R, et al. A study on the SCC susceptibility of friction stir welded AZ31 Mg sheet [J]. Mater. Sci. Eng., 2007, A460/461: 243
[4] Zeng R C, Chen J, Dietzel W, et al.Corrosion of friction stir welded magnesium alloy AM50[J]. Corros. Sci., 2009, 51: 1738
[5] Li X K, Zhang Z M, Zhao Y L.Research and future development of wrought magnesium alloy[J]. Hot Work. Technol., 2011, 40(24): 54
[5] (李新凯, 张志民, 赵亚丽. 变形镁合金的研究现状及前景[J]. 热加工工艺, 2011, 40(24): 54)
[6] Ding W J.Science and Technology of Magnesium Alloys [M]. Beijing: Science Press, 2007
[6] (丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007)
[7] Aghion E, Bronfin B, Eliezer D.The role of the magnesium industry in protecting the environment[J]. J. Mater. Proc. Technol., 2001, 117: 381
[8] Huo H W, Li Y, Wang H N, et al.Corrosion and protection of magnesium alloys[J]. Mater. Rev., 2001, 15(7): 25
[8] (霍宏伟, 李瑛, 王赫男等. 镁合金的腐蚀与防护[J]. 材料导报, 2001, 15(7): 25)
[9] Yang S M, Liu D D.Research status and Prospect of friction stir welding of magnesium alloys[J]. J. Rare Met., 2014(5): 896
[9] (杨素媛, 刘冬冬. 镁合金搅拌摩擦焊的研究现状与展望[J]. 稀有金属, 2014(5): 896)
[10] Zhao D S, Ma Z B, Luan G H.Present situation and development trend of friction stir welding technology[J]. Weld. Join., 2013, (12): 16
[10] (赵东升, 马正斌, 栾国红. 搅拌摩擦焊技术发展现状与趋势[J]. 焊接, 2013, (12): 16)
[11] Luo H T.Dynamic characteristic analysis and optimization design of heavy load friction stir welding robot [D]. Beijing: University of Chinese Academy of Sciences, 2013
[11] (骆海涛. 重载强扰动搅拌摩擦焊机器人动态特性分析与优化设计 [D]. 北京: 中国科学院大学, 2013)
[12] Wang L, Xie F, Zhang S.Effect of friction stir welding on microstructure and hardness of 5A02 aluminum alloy[J]. Light Alloy Process. Technol., 2016, 44(3): 60
[12] (王丽, 谢非, 张书. 搅拌摩擦焊对5A02铝合金微观组织及硬度的影响[J]. 轻合金加工技术, 2016, 44(3): 60)
[13] Xu R Z.Effect of welding parameters on friction stir welding of mg Al dissimilar materials[J]. Light Alloy Process. Technol., 2014, 42(7): 56
[13] (徐荣政. 焊接工艺参数对镁铝异种材料搅拌摩擦焊的影响[J]. 轻合金加工技术, 2014, 42(7): 56)
[14] Chen X J.The research on friction stir welding process of magnesium alloy and corrosion protection of the weld [D]. Changchun: Jilin University, 2009
[14] (陈显君. 镁合金搅拌摩擦焊工艺及焊缝腐蚀防护研究 [D]. 长春: 吉林大学, 2009)
[15] Song G L, Atrens A, Dargusch M.Influence of microstructure on the corrosion of diecast AZ91D[J]. Corros. Sci., 1998, 41: 249
[1] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[2] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[8] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[10] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[11] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[12] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.