Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 148-154    DOI: 10.11902/1005.4537.2016.001
  研究报告 本期目录 | 过刊浏览 |
磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响
张康南,吴明(),谢飞,王丹,伞宇曦,江峰
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Effect of Magnetic Field on Corrosion of X80 Pipeline Steel in Meadow Soil at Shenyang Area
Kangnan ZHANG,Ming WU(),Fei XIE,Dan WANG,Yuxi SAN,Feng JIANG
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(5729 KB)   HTML
摘要: 

采用失重法并结合XRD,SEM和EDS等手段,研究了磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响规律。结果表明:磁场的存在促进了X80管线钢在沈阳土壤中的腐蚀;与无磁场相比,外加磁场下X80钢电极表面腐蚀产物出现了疏松多孔型的FeO(OH),导致产物膜保护性减弱;随着磁场强度的增大,腐蚀产物中Fe3O4含量降低,FeO(OH) 含量增多,产物膜保护性逐渐减弱,X80钢腐蚀速率逐渐增加,但增大的幅度逐渐减小。磁场强度增大到一定程度会抑制完整产物膜的形成,当磁场达到20 mT时,X80钢年平均腐蚀速率达到73.799 μm/a,产物膜完整性差,出现了明显的裂纹,腐蚀现象最为严重,这是由于磁场能够使单个氧化物晶粒沿择优取向生长的缘故。

关键词 磁场X80管线钢草甸土腐蚀    
Abstract

The influence of magnetic field on the corrosion of X80 pipeline steel in meadow soil at Shenyang area was investigated by means of mass loss method, X-ray diffractometer (XRD), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS). The results indicated that the magnetic field accelerated the corrosion rate of X80 pipeline steel in the soil. In contrast to the circumstance without magnetic field, porous FeO(OH) emerged on the X80 steel electrode surface under magnetic field which weakened the protectiveness of the formed scales. With the increase of the magnetic field strength, Fe3O4 content decreased and FeO(OH) content increased in the corrosion products, which led to the increase of the corrosion rate of X80 steel. However, the increment of the corrosion rate slowed down during the process. As the magnetic field intensity increases to a certain extent, the formation of an integrated corrosion product may be suppressed. As the magnetic field intensity reached to 20 mT, the integrity of the formed scale became poor with cracks, thereby the corrosion rate of X80 steel increased to 73.799 μm/a. These phenomena may be ascribed to that the magnetic field facilitates the preferred oriented growth of oxide grains.

Key wordsmagnetic field    X80 pipeline steel    meadow soil    corrosion
收稿日期: 2016-01-03     
基金资助:国家自然科学基金 (51574147) 和辽宁省科学研究基金 (L2014156)

引用本文:

张康南,吴明,谢飞,王丹,伞宇曦,江峰. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.
Kangnan ZHANG, Ming WU, Fei XIE, Dan WANG, Yuxi SAN, Feng JIANG. Effect of Magnetic Field on Corrosion of X80 Pipeline Steel in Meadow Soil at Shenyang Area. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 148-154.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.001      或      https://www.jcscp.org/CN/Y2017/V37/I2/148

图1  自制密封聚氯乙烯容器
图2  X80管线钢微观组织
图3  X80钢试样在不同磁场强度作用下的沈阳草甸土中浸没182 d后的平均年腐蚀速率和穿透深度折线图
图4  X80钢试样在不同磁场强度下沈阳草甸土中埋置182 d后的宏观形貌
图5  X80钢试样在不同磁场强度下沈阳草甸土中浸没182 d后腐蚀产物的XRD谱
图6  X80钢试样在不同磁场强度下沈阳草甸土中埋置182 d后的表面SEM像
图7  X80钢试样在不同磁场强度下沈阳草甸土中埋置182 d形成的腐蚀产物膜的EDS分析结果
图8  X80钢试样土壤埋置182 d并去除腐蚀产物后的表面形貌
Magnetic field strength / mT Fe O Mn Cl C
0 55.86 34.48 0.87 8.79 0
5 52.05 35.83 5.48 6.64 0
10 49.41 39.19 2.43 2.70 6.27
15 49.01 45.04 0.86 5.09 0
20 48.77 49.55 0 0.69 0.99
表1  X80钢试样产物膜的EDS分析结果
[1] Liu Y Y, Jia H B, Zhang H M, et al.Study on soil corrosion behavior of super X80 pipeline steel[J]. Hot Work. Technol., 2015, 44(8): 57
[1] (刘英义, 贾宏斌, 张红梅等. 高级X80管线钢土壤腐蚀行为的研究[J]. 热加工工艺, 2015, 44(8): 57)
[2] Fan L, Du C W, Liu Z Y, et al.Stress corrosion cracking of X80 pipeline steel exposed to high pH solutions with different concentrations of bicarbonate[J]. Int. J. Min. Metall. Mater., 2013, 20: 645
[3] Dai J Y, Li C J, Xie P.Study on internal corrosion behavior of X80 pipeline steel used in the second west-east pipeline project[J]. Chem. Eng. Oil Gas, 2015, 44(2): 73
[3] (代佳赟, 李长俊, 谢萍. 西气东输二线X80管线钢内腐蚀行为的研究[J]. 石油与天然气化工, 2015, 44(2): 73)
[4] El-Shamy A M, Shehata M F, Ismail A I M. Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines[J]. Appl. Clay Sci., 2015, 114: 461
[5] de Freitas Cunha Lins V, Ferreira M L M, Saliba P A. Corrosion resistance of API X52 carbon steel in soil environment[J]. J. Mater. Res. Technol., 2012, 1: 161
[6] Wang X, Zhang R Y, Shen S F.Research on the corrosion behaviour of X80 steel in simulative soil solution[J]. Chem. Eng. Oil Gas, 2012, 41: 594
[6] (王霞, 张仁勇, 申少飞. X80钢在土壤模拟液中的腐蚀行为研究[J]. 石油与天然气化工, 2012, 41: 594)
[7] Yang S, Tang N, Yan M C, et al.Effect of temperature on corrosion behavior of X80 pipeline steel in acidic soil[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 227
[7] (杨霜, 唐囡, 闫茂成等. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35: 227)
[8] Qu L S, Du C W, Li X G, et al.Spatial variability of soil resistivity and rational sampling for corrosion assessment of carbon steel in Daqing area[J]. Acta Metall. Sin.(Eng. Lett.), 2010, 23: 396
[9] La Susa P.Lab testing reveals relationships among soil quality, corrosion and the pipeline environment[J]. Pipeline Gas J., 2010, 237: 92
[10] Li X G.Corrosion and Protection of Materials [M]. Changsha: Central South University Press, 2009: 156
[10] (李晓刚. 材料腐蚀与防护 [M]. 长沙: 中南大学出版社, 2009: 156)
[11] Kuang D, Cheng Y F.Effect of alternating current interference on coating disbondment and cathodic protection shielding on pipelines[J]. Corros. Eng. Sci. Technol., 2015, 50(3): 211
[12] Kuang D, Cheng Y F.AC corrosion at coating defect on pipelines[J]. Corrosion, 2015, 71: 267
[13] Xu L Y, Cheng Y F.Experimental and numerical studies of effectiveness of cathodic protection at corrosion defects on pipelines[J]. Corros. Sci., 2014, 78: 162
[14] Han D, Jiang R J, Cheng Y F.Mechanism of electrochemical corrosion of carbon steel under deoxygenated water drop and sand deposit[J]. Electrochim. Acta, 2013, 114: 403
[15] Zhang P, Chen G, Guo B, et al. Corrosion inhibition mechanism of magnetic field on carbon steel [J]. Adv. Mater. Res., 2010, 152/153: 353
[16] Wang C, Chen J M.Effect of magnetic field on metal corrosion and electrodeposiont[J]. Corros. Prot., 1991, (4): 165
[16] (王晨, 陈俊明. 磁场对金属腐蚀与电沉积的影响[J]. 腐蚀与防护, 1991, (4): 165)
[17] Ghabashy M A.Effect of magnetic field on the rate of steel corrosion in aqueous solutions[J]. Anti Corros. Methods Mater., 1954, 35: 12
[18] Ghabashy M E, Sedahmed G H, Mansour I A S. Effect of a magnetic field on the rate of diffusion-controlled corrosion of metals[J]. Br. Corros. J., 1982, 17: 36
[19] Busch K W, Busch M A, Parker D H, et al.Studies of a water treatment device that uses magnetic fields[J]. Corrosion, 1986, 42: 211
[20] Lv Z P, Yang W, Huang D L, et al.Open circuit state and cathodic diffusion process of copper in sulfuric acid solution containing ferric ion in the presence of magnetic field with different intensity[J]. J. Chin. Soc. Corros. Prot., 2001, 21: 129
[20] (吕战鹏, 杨武, 黄德伦等. 磁场对铜在含三价铁离子硫酸溶液中的腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2001, 21: 129)
[21] Chen J M, Lv Z P.Anodic polarization behavior of Fe/Na2SO4 system in the presence of magnetic field and additional ions[J]. J. Chin. Soc. Corros. Prot., 1998, 18: 119
[21] (陈俊明, 吕战鹏. 磁场和杂质离子存在下Fe/Na2SO4体系的阳极极化行为[J]. 中国腐蚀与防护学报, 1998, 18: 119)
[22] Lv Z P, Huang D L, Yang W.Magnetic field induced variation of open circuit state of iron in chloride solutions[J]. Corros. Prot., 2002, 23: 185
[22] (吕战鹏, 黄德伦, 杨武. 磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化[J]. 腐蚀与防护, 2002, 23: 185)
[23] Wang C, Chen J M.The effect of strong magnetic field on corrosion behavior of iron[J]. J. Chin. Soc. Corros. Prot., 1994, 14: 123
[23] (王晨, 陈俊明. 磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响[J]. 中国腐蚀与防护学报, 1994, 14: 123)
[24] Srivastava K, Nigam N.Protection of mild steel in sulphuric acid by magnetic fields[J]. Br. Corros. J., 1988, 23: 172
[25] Noor E A, Al-Moubaraki A H. Influence of soil moisture content on the corrosion behavior of X60 steel in different soils[J]. Arabian J. Sci. Eng., 2014, 39: 5421
[26] Formaro L.Rate law of growth of γ-FeOOH layers from solutions[J]. Mater. Lett., 1988, 6: 290
[27] Liu Z Y, Zheng W R, Wang L W, et al.Corrosion characteristics of X70 pipeline steel under disbonded coatings in Kuerle soil environment[J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 1483
[27] (刘智勇, 郑文茹, 王力伟等. 库尔勒土壤环境中X70管线钢剥离涂层下的腐蚀特征[J]. 北京科技大学学报, 2014, 36: 1483)
[28] Wu J W, Li X G, Du C W, et al.Short-term corrosion behavior of X70 steel in Ku'erle soil[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 15
[28] (武俊伟, 李晓刚, 杜翠薇等. X70钢在库尔勒土壤中短期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2005, 25: 15)
[29] Zhang N, Sun H Y, Sun L J, et al.Electrochemical corrosion behavior of X80 pipeline steel in a simulated soil solution for coastal tidal flat wetland[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 339
[29] (张宁, 孙虎元, 孙立娟等. X80管线钢在滨海滩涂土壤模拟液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35: 339)
[30] Guo H, Du C W, Li X G, et al.Study on simulated-crevice corrosion mechanism of X70 steel in bicarbonate solution[J]. Corros. Sci. Prot. Technol., 2008, 20: 336
[30] (郭昊, 杜翠薇, 李晓刚等. 在NaHCO3溶液中X70钢的模拟缝隙腐蚀机理研究[J]. 腐蚀科学与防护技术, 2008, 20: 336)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[7] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[8] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[9] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[10] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[11] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.