Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 415-420    DOI: 10.11902/1005.4537.2015.214
  本期目录 | 过刊浏览 |
新型含长链烷基苯并三唑缓蚀剂的制备与性能研究
左翔1,2(),蒋裕丰1,迟挺1,胡鑫1,曹冬梅1,蔡烽2
1. 水资源高效利用与工程安全国家工程研究中心 南京 210019
2. 南京工业大学材料科学与工程学院 南京 210009
Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors
Xiang ZUO1,2(),Yufeng JIANG1,Ting CHI1,Xin HU1,Dongmei CAO1,Feng CAI2
1. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing 210019, China
2. College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009, China
全文: PDF(791 KB)   HTML
摘要: 

以4种不同碳链长度的烷基硫醇、氯乙酸钠和苯并三唑为原料,合成了一系列新型的1-(2'-烷硫基乙酰基)-苯并三唑缓蚀剂。采用失重法和电化学方法评价了这4种苯并三唑衍生物对Cu在3.5%(质量分数)NaCl溶液中的缓蚀性能,同时对缓蚀剂分子在Cu表面的吸附规律进行了初步的研究。结果表明,该系列苯并三唑衍生物是一类以阳极抑制为主的混合型缓蚀剂,其在Cu表面的吸附行为符合Langmuir等温吸附模型,吸附过程包括物理吸附和化学吸附,当用量为150 mgkg-1时,缓蚀率可达到94.6%以上,并且具有良好的耐温性能。

关键词 1-(2'-烷硫基乙酰基)-苯并三唑Cu缓蚀剂阳极抑制Langmuir等温吸附模型    
Abstract

A series of new corrosion inhibitors named 1-(2'-alkylsulfanylacetyl)-benzotriazole derivatives were synthesized by alkyl sulfhydryls of different lengths, sodium chloroacetate and benzotriazole. The corrosion inhibition effect of benzotriazole derivatives on copper was evaluated in 3.5%NaCl solution by means of weight loss and electrochemical testing methods, while the adsorption pattern of corrosion inhibitor molecules on the surface of copper was studied. The results show that the benzotriazole derivatives act as mixed type inhibitors with anode inhibition as dominative action. The adsorption of corrosion inhibitor molecules on copper surface obey Langmuir adsorption isotherm, including both physical and chemical adsorption. The synthesized benzotriazole derivatives possess high corrosion inhibition efficiency and excellent temperature resistance.

Key words1-(2'-alkylsulfanylacetyl)-benzotriazole    copper    corrosion inhibitor    anode inhibition    Langmuir adsorption isotherm
    
基金资助:国家海洋可再生能源专项资金项目 (GHME2013GC03)资助

引用本文:

左翔,蒋裕丰,迟挺,胡鑫,曹冬梅,蔡烽. 新型含长链烷基苯并三唑缓蚀剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
Xiang ZUO, Yufeng JIANG, Ting CHI, Xin HU, Dongmei CAO, Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 415-420.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.214      或      https://www.jcscp.org/CN/Y2016/V36/I5/415

图1  Cu在不同温度的3.5%NaCl溶液中的腐蚀速率和缓蚀剂在不同温度下的缓蚀效率
Corrosion inhibitor 20 mgkg-1 50 mgkg-1 100 mgkg-1 150 mgkg-1
CR / mgcm-2h-1 IE / % CR / mgcm-2h-1 IE / % CR / mgcm-2h-1 IE / % CR / mgcm-2h-1 IE / %
Blank 69.3 --- --- --- --- --- --- ---
A1 24.8 64.2 11.4 83.6 10.1 85.4 8.3 88.0
A2 23.8 65.7 10.7 84.5 5.1 92.7 3.7 94.6
A3 33.1 52.3 22.0 68.2 15.9 77.0 16.8 75.8
A4 35.6 48.7 24.8 64.2 17.7 74.4 18.7 73.0
B1 42.6 38.5 29.6 57.3 21.5 69.0 18.5 73.3
B2 41.5 40.1 27.9 59.8 18.4 73.4 15.9 77.1
表1  Cu在含有不同浓度缓蚀剂的3.5%NaCl溶液中的失重实验数据
Corrosion inhibitor 104 Kads Gads / kJmol-1
A1 4.17 -36.31
A2 3.57 -35.92
A3 3.45 -35.84
A4 3.22 -35.67
B1 1.06 -32.91
B2 1.19 -33.20
表2  缓蚀剂的Langmuir等温吸附式拟合参数
图2  缓蚀剂在25 ℃下的Langmuir等温吸附线
图3  Cu在含不同浓度缓蚀剂A2的3.5%NaCl溶液中的极化曲线
Concentration mgkg-1 EcorrV βc
mVdec-1
βa
mVdec-1
Icorr
μAcm-2
IE%
Blank -0.228 228 34 7.73 ---
20 -0.209 265 49 2.26 70.8
50 -0.193 261 56 0.99 87.2
100 -0.185 287 68 0.48 93.8
150 -0.179 306 66 0.46 94.1
表3  Cu在含不同浓度缓蚀剂A2的3.5%NaCl溶液中的极化参数
图4  Cu在含不同浓度缓蚀剂A2的3.5%NaCl溶液中的Nyquist图
Concentrationmgkg-1 RsΩcm2 RctΩcm2 CdlμFcm2 IE%
Blank 8.1 449.3 77.2 ---
20 11.2 1552.4 43.4 71.1
50 9.4 4275.2 37.5 89.5
100 8.6 6903.5 23.0 93.5
150 10.3 8977.0 28.1 95.0
表4  Cu在含不同浓度缓蚀剂A2的3.5%NaCl溶液中的阻抗拟合参数
图5  EIS等效电路
[1] Qi D M, Ceng R Y, Du X Q, et al.Review on atmospheric corrosion of copper and copper alloys[J]. J. Chin. Soc. Corros. Prot., 2014, 34(5): 389
[1] (齐东梅, 成若义, 杜小青等. Cu及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2014, 34(5): 389)
[2] Zhuang L H, Lv Z B, Tian Y W, et al.Present situation on research of corrosion inhibition technology for copper and its alloys[J]. Corros. Sci. Prot. Technol., 2005, 17(6): 418
[2] (庄丽宏, 吕振波, 田彦文等. 铜腐蚀及其缓蚀技术应用研究现状[J]. 腐蚀科学与防护技术, 2005, 17(6): 418)
[3] Dugdale I, Cotton J B.An electrochemical investigation on the prevention of staining of copper by benzotriazole[J]. Corros. Sci., 1963, 3(2): 69
[4] Hashemia T, Hogarth C A.The mechanism of corrosion inhibition of copper in NaCl solution by benzotriazole studied by electron spectroscopy[J]. Electrochim. Acta, 1988, 33(8): 1123
[5] Wu Y X, Liu M J, He G Q, et al.Synthesis of some carbonyl derivatives of BTA and determination of their inhibitive properties for copper in 3%NaCl solution[J]. Corros. Sci. Prot. Technol., 1997, 9(3): 201
[5] (吴永炘, 刘呜江, 何国强等. BTA酰基衍生物的合成及对Cu在3%NaCl水溶液中缓蚀性能的研究[J]. 腐蚀科学与防护技术, 1997, 9(3): 201
[6] Fleischmann M, Hill I R, Mengoli G, et al.A comparative study of the efficiency of some organic inhibitors for the corrosion of copper in aqueous chloride media using electrochemical and surface enhanced Raman scattering techniques[J]. Electrochim. Acta, 1985, 30(7): 879
[7] Kunitsugu A, Takehiro K, Takashi S.Surface enhanced Raman scattering and impedance studies on the inhibition of copper corrosion in sulfate solution 5-substituted benzotriazole[J]. Corros. Sci., 1991, 32(5/6): 593
[8] Raicheva S N, Aleksiev B V, Sokolova E I.The effect of the chemical- structure of some nitrogen-containing and sulfur-containing organic-compounds on their corrosion inhibiting action[J]. Corros. Sci., 1993, 34(2): 343
[9] El Sayed H, El Ashry, Ahmed E N, et al.QSAR of benzimidazole and 2-substituted derivatives as corrosion inhibitors by using the quantum chemical parameters[J]. Prog. Org. Coat., 2008, 61(1): 11
[10] Xiao X S, Yen P T, Simo O P.Evaluation of an organic corrosion inhibitor on abiotic corrosion and microbiologically influenced corrosion of mild steel[J]. Ind. Eng. Chem. Res., 2007, 46(22): 7117
[11] Obot I B, Obi-Egbedi N O. Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inibitors[J]. Corros. Sci., 2010, 52(2): 657
[12] Zhang T L, Cao S R, Dai S S, et al.Corrosion inhibition performance and mechanism of (1-tetradecyl-1H-[1,2,3]triazol-4-yl)-methanol[J]. Corros. Sci. Prot. Technol., 2014, 26(4): 329
[12] (张太亮, 曹舒然, 戴珊珊等. 1-十四烷基-4-羟甲基-1,2,3-三唑盐酸缓蚀剂的性能及机理研究[J]. 腐蚀科学与防护技术, 2014, 26(4): 329)
[13] Zhang T L, Cao S R, Quan H P, et al.Synthesis and corrosion inhibition performance of alkyl triazole derivatives[J]. Res. Chem. Intermed., 2015, 41(5): 2709
[14] Solmaz R, Kardas G, Yazici B, et al. Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-l, 3,4- thiadiazole on mild steel in hydrochloric acid media [J]. Colloids Surf., 2008, 312(1)A: 7
[15] Tang Y M, Yang X Y, Yang W Z, et al.A preliminary investigation of corrosion inhibition of mild steel in 0.5 M H2SO4 by 2-amino-5- (n-pyridyl)-1,3,4-thiadiazole: Polarization, EIS and molecular dynamics simulations[J]. Corros. Sci., 2010, 52(5): 1801
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[8] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[11] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[12] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[13] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[14] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[15] 和佳乐, 王菊琳. 初始pH值和Cl-浓度对CuCl水解的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.