Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 421-426    DOI: 10.11902/1005.4537.2015.207
  本期目录 | 过刊浏览 |
Al-Mg-Sn-Ga铝阳极合金电化学性能研究
马景灵1,2(),任凤章1,王广欣1,2,熊毅1,文九巴1
1. 河南科技大学材料科学与工程学院 洛阳 471023
2. 河南科技大学 高纯材料研究中心 洛阳 471023
Electrochemical Performance of Al-Mg-Sn-Ga Aluminum Anode Alloy
Jingling MA1,2(),Fengzhang REN1,Guangxin WANG1,2,Yi XIONG1,Jiuba WEN1
1. School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, China
全文: PDF(2285 KB)   HTML
摘要: 

研究了铝空气电池阳极合金Al-0.5Mg-0.1Sn-0.05Ga (质量分数,%) 在铸态及40%变形状态下、在2 mol/L NaCl及4 mol/L NaOH溶液中的电化学性能,以期改善该合金的放电性能。结果表明,40%变形工艺提高了该合金的电化学活性,同时减小了合金的腐蚀速率。这是由于通过变形使铸态合金晶粒细化所致。合金的放电形貌及电化学阻抗谱 (EIS) 测试结果与电化学性能相符,变形合金作为阳极的空气电池,在2 mol/L NaCl溶液中的工作电位及阳极利用率高于Zn在4 mol/L NaOH溶液中相应的性能。

关键词 铝合金空气电池变形自腐蚀    
Abstract

In this research, Al-air battery based on Al-0.5Mg-0.1Sn-0.05Ga (mass fraction, %) anodes were set up, and then the electrochemical performance of the alloy, including the as-cast one and the deformed one with 40% reduction, was investigated in 2 mol/L NaCl and 4 mol/L NaOH solutions. The results show that the deformation process can increase the electrochemical activity, while decrease the free-corrosion rate of the alloy. This may be partially ascribed to the grain refinement induced by deformation process. The morphology observation of the alloy after discharge and the measured electrochemical impedance spectroscopy of the alloy proved the corrosion characteristics fairly well. In comparison, the working voltage and the anodic utilization rate of the deformed Al-0.5Mg-0.1Sn-0.05Ga alloy in 2 mol/L NaCl solution are higher than those of Zn in 4 mol/L NaOH solution.

Key wordsaluminum alloy    air battery    deformation    self-corrosion
    
基金资助:河南省科技攻关计划项目 (162102210051) 和河南科技大学科技创新团队项目 (2015XTD006) 资助

引用本文:

马景灵,任凤章,王广欣,熊毅,文九巴. Al-Mg-Sn-Ga铝阳极合金电化学性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 421-426.
Jingling MA, Fengzhang REN, Guangxin WANG, Yi XIONG, Jiuba WEN. Electrochemical Performance of Al-Mg-Sn-Ga Aluminum Anode Alloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 421-426.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.207      或      https://www.jcscp.org/CN/Y2016/V36/I5/421

图1  铸态及变形态Al-0.5Mg-0.1Sn-0.05Ga合金在2 mol/L NaCl, 4 mol/L NaOH溶液中及Zn在4 mol/L NaOH溶液中的极化曲线
Material Solution Ecorr (Hg/HgO)V IcorrmAcm-2 RpΩcm2 Corrosion rate mgcm-2h-1
Al-Mg-Sn-Ga Cast 2 mol/L NaCl -1.40 0.76 67.9 6.27×10-3
Deformation 2 mol/L NaCl -1.43 0.28 106.9 5.63×10-3
Cast 4 mol/L NaOH -1.84 21.25 2.1 62.16
Deformation 4 mol/L NaOH -1.82 10.87 4.1 57.28
Zn Cast 4 mol/L NaOH -1.42 0.45 48.0 11.65
表1  铸态及变形Al-0.5Mg-0.1Sn-0.05Ga合金在2 mol/L NaCl, 4 mol/L NaOH溶液中及Zn在4 mol/L NaOH溶液中的腐蚀参数
图2  Al-0.5Mg-0.1Sn-0.05Ga合金在2 mol/L NaCl, 4 mol/LNaOH溶液中及Zn在4 mol/L NaOH溶液中的恒流放电曲线
Material Solution Operating voltage / V Anodic utilization / %
Al-Mg-Sn-Ga Cast 2 mol/L NaCl 1.13 67.8
Deformation 2 mol/L NaCl 1.16 68.9
Cast 4 mol/L NaOH 1.18 22.9
Deformation 4 mol/L NaOH 1.37 25.1
Zn Cast 4 mol/L NaOH 1.01 19.7
表2  不同阳极的金属-空气电池的放电性能参数
图3  Al-0.5Mg-0.1Sn-0.05Ga合金及Zn阳极在不同溶液中放电后的腐蚀形貌
图4  铸态及变形态Al-0.5Mg-0.1Sn-0.05Ga合金和Zn在2 mol/L NaCl和4 mol/L NaOH溶液中的EIS及其拟合曲线
图5  Al-0.5Mg-0.1Sn-0.05Ga合金和Zn在2 mol/L NaCl 和 4 mol/L NaOH 溶液中的等效电路图
Anode Solution L10-7 Hcm2 RsΩcm2 CPE110-4 Fcm-2 n10<n<1 RtΩcm2 CPE210-3 Fcm-2 n20<n<1 R2Ωcm2 L110-3 Hcm2 R1Ωcm2 x2
Al alloy cast 2 mol/L NaCl --- 7.86 30.35 0.84 930 4.25 0.80 64 --- --- 1.48×10-3
Al alloy deformation 2 mol/L NaCl --- 5.38 43.69 0.90 451 0.47 0.61 152 --- --- 5.23×10-4
Al alloy cast 4 mol/L NaOH 10.88 2.93 85.87 0.80 0.36 --- --- --- 29.13 0.06 5.97×10-5
Al alloy deformation 4 mol/L NaOH 11.73 1.65 56.71 0.35 1×10-7 --- --- --- 48.08 0.10 7.37×10-5
Zn 4 mol/L NaOH 11.99 1.87 81.09 0.60 4.43 --- --- --- 22.78 1.55 1.41×10-3
表3  Al-0.5Mg-0.1Sn-0.05Ga合金和纯Zn的EIS拟合值
[1] Nestoridi M, Pletcher D, Wood R J K, et al. The study of aluminium anodes for high power density Al/air batteries with brine electrolytes[J]. J. Power Sources, 2008, 178: 445
[2] Egan D R, Ponce C, Wood R J K, et al. Developments in electrode materials and electrolytes for aluminiumeair batteries[J]. J. Power Sources, 2013, 236: 293
[3] Lee S M, Kim Y J, Eoma S W, et al.Improvement in self-discharge of Zn anode by applying surface modification for Zn-air batteries with high energy density[J]. J. Power Sources, 2013, 227: 177
[4] Wu G M, Yang C C.Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes[J]. J. Membr. Sci., 2006, 280: 802
[5] Moore K L, Sykes J M, Grant P S.An electrochemical study of repassivation of aluminium alloys with SEM examination of the pit interiors using resin replicas[J]. Corros. Sci., 2008, 50: 3233
[6] Gudic S, Smoljko I, Kli?kic M.Cathodic breakdown of anodic oxide film on Al and Al-Sn alloys in NaCl solution[J]. Electrochim. Acta, 2005, 50: 5624
[7] Li Q, Bjerrum J.Aluminum as anode for energy storage and conversion: A review[J]. J. Power Sources, 2002, 110: 1
[8] Flamini D O, Saidman S B, Bessone J B.Electrodeposition of gallium and zinc onto aluminium. Influence of the electrodeposited metals on the activation process[J]. Thin Solid Films, 2007, 515: 7880
[9] Gudic S, Smoljko I, Kliskic M.Electrochemical behaviour of aluminium alloys containing indium and tin in NaCl solution[J]. Mater. Chem. Phys., 2010, 121: 561
[10] Ghali E.Corrosion Resistance of Aluminum and Magnesium Alloys. Understanding, Performance and Testing[M]. Denver: Wiley, 2010
[11] Brunner J G, May J, H?ppel H W, et al.Localized corrosion of ultrafine-grained Al-Mg model alloys[J]. Electrochim. Acta, 2010, 55: 1966
[12] Lin C J, Shih H C.Improvement of the current efficiency of an Al-Zn-In anode by heat-treatment[J]. J. Electrochem. Soc., 1987, 134:817
[13] Zhang Y, Liang S Q, Athar J, et al.Effect of pass deformation on microstructure, corrosion and electrochemical properties of aluminum alloy anodes for alkaline aluminum fuel cell applications[J]. Met. Mater. Int., 2013, 19: 555
[14] Liang S Q, Zhang Y, Guan D K, et al.Effect of rolling processing on microstructure and electrochemical properties of high active aluminum alloy anode[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 942
[15] Cao C N.Corrosion Electrochemistry [M]. Beijing: Chemistry Industry Press, 2007
[15] (曹楚南. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2007)
[16] Osório W R, Freitas E S, Garcia A.EIS parameters and cell spacings of an Al-Bi alloy in NaCl solution[J]. Electrochim. Acta, 2013, 108: 781
[17] Mansfeld F.Models for the impedance behavior of protective coatings and cases of localized corrosion[J]. Electrochim. Acta, 1993, 38: 1891
[1] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[8] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[9] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[10] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[11] 曹敏, 刘莉, 余钟芬, 李瑛, 王福会. 2A02铝合金在模拟海洋大气环境中的剥蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[12] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[13] 郝利新, 贾瑞灵, 张慧霞, 张伟, 赵婷, 翟熙伟. 7A52铝合金双丝MIG焊接头的不均匀性对其表面微弧氧化膜腐蚀防护作用的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 219-225.
[14] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[15] 崔晓飞, 谭晓明, 王德, 钱昂. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.