Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 433-440    DOI: 10.11902/1005.4537.2015.205
  本期目录 | 过刊浏览 |
湿热工业海洋大气中Si对桥梁钢腐蚀行为的影响
李东亮,付贵勤,朱苗勇()
东北大学冶金学院 沈阳 110819
Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area
Dongliang LI,Guiqin FU,Miaoyong ZHU()
School of Metallurgy, Northeastern University, Shenyang 110819, China
全文: PDF(9289 KB)   HTML
摘要: 

以NaCl+NaHSO3为腐蚀介质,通过周期浸润加速腐蚀实验、腐蚀失重、XRD、XPS、SEM/EDS和极化曲线等,研究了湿热工业-海洋大气环境中,Si对桥梁钢腐蚀行为的影响。结果表明:实验钢的腐蚀过程遵循幂函数分布规律。Si含量由0.25% (质量分数) 增加到0.48%,实验钢的耐蚀性提高,但随锈层保护性增强,Si的作用有所减弱。Si在强化铁素体组织、细化腐蚀产物颗粒和促进铁氧化物结晶方面的作用显著,能使锈层的保护性在短时间内得到提升。同时Si在裂纹和锈巢边缘出现富集,一定程度上能帮助修复锈层缺陷。Fe2SiO4是Si在锈层中的主要存在形式,具有反尖晶石结构,能增强锈层的稳定性。

关键词 桥梁钢大气腐蚀工业-海洋大气湿热环境锈层    
Abstract

The effect of Si on the corrosion behavior of two model bridge steels by alternative wetting and drying test in an artificial medium of 0.1 mol/L NaCl+0.01 mol/L NaHSO3, which aims to simulate the atmosphere corrosion of marine and industrial area, was investigated by mass loss method, polarization curve measurement, X-ray diffraction and scanning electron microscope with energy spectrum. The results indicate that the corrosion process of the two steels follows fairly well a power function of W=At n. When the Si content increases from 0.25% (mass fraction) to 0.48%, the weathering resistance of the two steels enhanced. However, with the increase of the thickness of the protective rust layer, the positive effect of Si weakened gradually. Si plays a significant role in strengthening ferrite microstructure, refining the grain size of corrosion products and promoting the crystallization of iron oxide, which enable the protectiveness of the rust layer to be increased in a short time. Besides, Si enriched in the edge of cracks and holes of the rust layer, that may be beneficial to the mending of defects. In the rust layer, Si exists mainly in the phase Fe2SiO4, which has an inverse spinel structure, and thus can enhance the stability of the rust layer.

Key wordsbridge steel    atmospheric corrosion    industrial-marine atmosphere    hot and humid environment    rust layer
    
基金资助:国家自然科学基金项目 (51304040) 和教育部基本科研业务费项目 (N150204008) 资助

引用本文:

李东亮,付贵勤,朱苗勇. 湿热工业海洋大气中Si对桥梁钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
Dongliang LI, Guiqin FU, Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 433-440.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.205      或      https://www.jcscp.org/CN/Y2016/V36/I5/433

Steel C Si Mn P S Nb Ti Ni Cu Fe
1# 0.035 0.25 0.75 0.018 0.001 0.060 0.01 0.20 0.32 Bal.
2# 0.037 0.48 0.69 0.016 0.001 0.064 0.01 0.21 0.32 Bal.
表1  实验钢化学成分
图1  实验钢金相显微组织
图2  实验钢腐蚀深度和腐蚀速率随时间的变化曲线
Steel d / μm v / mma-1
1# d=1.72844t 0.71829,R2=0.99894 v=13.05361t -0.25275,R2=0.98785
2# d=1.27265t 0.76508,R2=0.99994 v=11.35520t -0.23852,R2=0.99941
表2  实验钢腐蚀动力学曲线拟合结果
图3  1#和2#钢腐蚀144和336 h后锈层的微观形貌
图4  带锈钢截面锈层微观形貌及元素线扫描结果
图5  1#和2#钢锈层的XRD谱
图6  2#钢腐蚀336 h后腐蚀产物中Si的XPS分析结果
图7  1#和2#钢的Tafel曲线
[1] Liang C F, Hou W T.The effect of alloying in carbon steels and low alloy steels on their atmospheric corrosion resistance[J]. J. Chin. Soc. Corros. Prot., 1997, 17(2): 87
[1] (梁彩凤, 侯文泰. 合金元素对碳钢和低合金钢在大气中耐腐蚀性的影响[J]. 中国腐蚀与防护学报, 1997, 17(2): 87)
[2] Oh S J, Cook D C, Townsend H E.Atmospheric corrosion of different steels in marine, rural and industrial environments[J]. Corros. Sci., 1999, 41(9): 1687
[3] Mejía Gómez J A, Antonissen J, Palacio C A, et al. Effects of Si as alloying element on corrosion resistance of weathering steel[J]. Corros. Sci., 2012, 59: 198
[4] Kim K Y, Hwang Y H, Yoo J Y.Effect of silicon content on the corrosion properties of calcium-modified weathering steel in a chloride environment[J]. Corrosion, 2002, 58(7): 570
[5] Townsend H E.Effect of alloying elements on the corrosion of steel in industrial atmospheres[J]. Corrosion, 2001, 57(6): 497
[6] Hudson J C, Stanners J F.The corrosion resistance of low-alloy steels[J]. J. Iron Steel Res. Int., 1955, 180: 271
[7] Larabee C P, Coburn S K.The atmospheric corrosion of steels influenced by changes in chemical composition [A]. Proceedings of the First International Congress on Metallic Corrosion[C]. London, 1961: 276
[8] Zhang Q S, Wang X D, Yu Y S, et al.The effect of Si on corrosion resistance of carbon steel in industrial atmosphere[J]. Mater. Prot., 2007, 40(8): 21
[8] (张起生, 王向东, 于永泗等. Si对碳钢耐大气腐蚀性能的影响[J]. 材料保护, 2007, 40(8): 21)
[9] Nishimura T.Corrosion performance of Si- and Al- bearing ultrafine grained weathering steel [A]. Proceedings of the Second International Conference on Advanced Structural Steels[C]. Shanghai, 2004: 124
[10] Nishimura T.Rust formation and corrosion performance of Si- and Al- bearing ultrafine grained weathering steel[J]. Corros. Sci., 2008, 50(5): 1306
[11] Nishimura T.Corrosion resistance of Si-Al-bearing ultrafine-grained weathering steel[J]. Sci. Technol. Adv. Mater., 2008, 9: 1
[12] Nishimura T.Electrochemical behavior and structure of rust formed on Si- and Al-bearing steel after atmospheric exposure[J]. Corros. Sci., 2010, 52(11): 3609
[13] Chen X H, Dong J H, Han E-H, et al.The Synergistic Effect of Aluminium and Silicon on corrosion resistance of chlorine ion for low alloy steel [A]. Proceedings of the 3rd International Conference on Advanced Structural Steels[C]. Gyeongju, 2006: 635
[14] Dong J H, Han E-H, Ke W, et al. One kind of Al-Si economy weathering steel [P]. China Pat: CN101033520, 2007-09-12
[14] (董俊华, 韩恩厚, 柯伟等. 一种AlSi型经济耐候钢 [P]. 中国专利: CN101033520, 2007-09-12)
[15] Chen X H.Synergistic effect of alloying elements on the resistance to atmospheric corrosion of cost effective weathering steel [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2007
[15] (陈新华. 合金元素对经济耐候钢大气腐蚀协同抑制作用 [D]. 沈阳: 中国科学院金属研究所, 2007)
[16] Xu H M, Zhang Y, Wang Y B, et al.Development of a low-cost Al-Si bearing weathering steel[J]. Iron Steel, 2013, 48(8): 70
[16] (许红梅, 张宇, 王银柏等. 一种低成本硅铝耐候钢的研制[J]. 钢铁, 2013, 48(8): 70)
[17] Zou D H, Guo A M.State and development using steel in railway bridge of China[J]. Steel Constr., 2009, 24(9): 1
[17] (邹德辉, 郭爱民. 我国铁路桥梁用钢的现状与发展[J]. 钢结构, 2009, 24(9): 1)
[18] Cui Z Q, Qin Y C.Metallography & Heat Treatment [M]. Beijing: China Machine Press, 2009: 228
[18] (崔忠圻, 覃耀春. 金属学与热处理 [M]. 北京: 机械工业出版社, 2009: 228)
[19] Burger E, Fénart M, Perrin S, et al.Use of the gold markers method to predict the mechanisms of iron atmospheric corrosion[J]. Corros. Sci., 2011, 53(6): 2122
[20] Lin C, Zhao Q, Liu Y E, et al.Evolution of corrosion products of 20 carbon steel in atmosphere containing SO2[J]. Acta Metall. Sin., 2010, 46(3): 358
[20] (林翠, 赵晴, 刘月娥等. 含SO2大气中20碳钢腐蚀产物的演变[J]. 金属学报, 2010, 46(3): 358)
[21] Hao L, Zhang S X, Dong J H, et al.Rusting evolution of MnCuP weathering steel submitted to simulated industrial atmospheric corrosion[J]. Metall. Mater. Trans., 2012, 43A: 1724
[22] Dong J, Dong J H, Han E-H, et al.Corrosion behavior of rusted mild steel under means of wet/dry alternate conditions[J]. Corros. Sci. Prot. Technol., 2006, 18(6): 414
[22] (董杰, 董俊华, 韩恩厚等. 低碳钢带锈电极的腐蚀行为[J]. 腐蚀科学与防护技术, 2006, 18(6): 414)
[23] Nishimura T.Corrosion behavior of silicon-bearing steel in a wet/dry environment containing chloride ions[J]. Mater. Trans., 2007, 48(6): 1438
[24] Yu F Z.The Corrosion Resistance of Metallic Materials [M]. Beijing: Science Press, 1982
[24] (于福洲. 金属材料的耐腐蚀性 [M]. 北京: 科学出版社, 1982)
[1] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[3] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[4] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[6] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[7] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[8] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[9] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[10] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[11] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[12] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[13] 孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[14] 白子恒,黄运华,李晓刚,杨浪,董超芳,颜利丹,肖葵. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[15] 刘艳洁,王振尧,柯伟. 纯Al在3种典型沿海,工业和乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.