Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 505-512    DOI: 10.11902/1005.4537.2015.203
  本期目录 | 过刊浏览 |
烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响
李琰1,2,鲁金涛1(),杨珍1,朱明2,谷月峰1
1. 西安热工研究院有限公司 国家能源清洁高效火力发电技术研发中心 西安 710032
2. 西安科技大学材料科学与工程学院 西安 710054
Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments
Yan LI1,2,Jintao LU1(),Zhen YANG1,Ming ZHU2,Yuefeng GU1
1. National Energy R&D Center of Clean and High-efficiency Fossil-fired Power Generation Technology, Xi′an Thermal Power Research Institute Co., Ltd., Xi′an 710032, China
2. College of Materials Science and Engineering, Xi′an University of Science and Technology,Xi′an 710054, China
全文: PDF(7225 KB)   HTML
摘要: 

在不同S含量模拟锅炉煤灰和烟气环境中,研究了两种典型先进超超临界锅炉候选Ni-Co基合金CCA 617和Ni-Fe基合金GH 2984在750 ℃时的热腐蚀行为。结果表明:在0.02%SO2气氛中,两种合金腐蚀速率均较小,腐蚀层致密性较好,内硫化较轻;在1.5%SO2气氛中,两种合金腐蚀速率均明显加快,腐蚀层显著增厚并伴随破裂剥落发生,内硫化加剧。在两种S含量气氛中,合金的腐蚀产物基本相同:CCA 617腐蚀产物主要以Cr2O3为主,以及少量 (Ni,Co)Cr2O4,Al2O3和硫化物;GH 2984合金主要为Fe2O3,Cr2O3,少量NiCr2O4和硫化物。基于实验结果讨论了两种合金的腐蚀机理及S含量对合金腐蚀过程的影响。

关键词 超超临界合金S含量高温腐蚀腐蚀机理    
Abstract

Corrosion behavior of two typical advanced ultra-supercritical (A-USC) boiler alloys, Ni-Co based CCA 617 and Fe-Ni based GH 2984, in simulated coal ash and flue gas environments with different sulfur content at 750 ℃ was studied. Results indicated that in the 0.02%SO2 containing environment, the corrosion rate of the two alloys was slow and the formed oxide scale was compact, dense and adherent to the substrate, while there existed only minor inner sulfides beneath the oxide scale. In the 1.5%SO2 containing environment, the corrosion rate was increase significantly, and the oxide scale thickened and suffered from spallation, while the inner sulfidation became significant. In the environments with different sulfur contents, the two alloys formed more or less the same corrosion products: the corrosion products of GH 2984 consisted of Fe2O3, Cr2O3, minor NiCr2O4 and sulfide; while that of CCA 617 consisted mainly of Cr2O3 with a small amount of (Ni, Co)Cr2O4, Al2O3 and sulfide. Besides, the corrosion mechanism and the effect of sulfur content on the corrosion process of two alloys were also discussed.

Key wordsA-USC    alloy    sulfur content    high temperature corrosion    corrosion mechanism
    
基金资助:国家自然科学基金项目 (51301130和51401163) 及中国华能集团公司重点科技项目资助

引用本文:

李琰,鲁金涛,杨珍,朱明,谷月峰. 烟气S含量对700 ℃超超临界锅炉候选合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
Yan LI, Jintao LU, Zhen YANG, Ming ZHU, Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 505-512.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.203      或      https://www.jcscp.org/CN/Y2016/V36/I5/505

图1  实验装置示意图
Alloy Cr Mo Mn Ti Fe Al Co Si Ni
CCA 617 22.5 9.01 0.27 0.68 0.77 0.97 13.8 0.45 51.72
GH 2984 18.8 2.29 --- 1.14 34.3 0.46 --- --- 42.95
表1  CCA 617和GH 2984合金的化学成分
S content H2O (g) O2 (g) CO2 (g) SO2 (g) N2 (g)
Lean 5 3.5 10 0.02 Bal.
Rich 5 3.5 10 1.5 Bal.
表2  腐蚀实验中烟气成分
图2  CCA 617和GH 2984合金在750 ℃下SO2气氛中的腐蚀增重曲线
图3  CCA 617和GH 2984合金在750 ℃SO2气氛中腐蚀500 h后腐蚀产物的XRD谱
图4  CCA 617合金在750 ℃下SO2气氛中腐蚀500 h后氧化膜的形貌
图5  GH 2984合金在750 ℃下SO2气氛中腐蚀500 h后氧化膜的形貌
图6  合金在750 ℃高硫气氛中腐蚀500 h后腐蚀层成分扫描图
图7  CCA 617合金腐蚀过程示意图
图8  GH 2984合金腐蚀过程示意图
图9  M-O-S 体系平衡相图
[1] Zhao S Q, Xie X S, Smith G D.The corrosion of Inconel 740 in simulated environments for pulverized coal-fired boiler[J]. Mater. Chem. Phys., 2005, 90(2): 275
[2] Lin F S, Xie X S, Zhao S Q, et al.Selection of superalloys for superheater tubes of domestic 700 ℃ A-USC boilers[J]. J. Chin. Soc. Power Eng., 2011, 31(12): 960
[2] (林富生, 谢锡善, 赵双群等. 我国700 ℃超超临界锅炉过热器管用高温合金选材探讨[J]. 动力工程学报, 2011, 31(12): 960)
[3] Gosia S B, J?rg M, Günter S.Nickel-base superalloys for ultrasupercritical coal fired power plants: Fireside corrosion. Laboratory studies and power plant exposures[J]. Fuel, 2013, 108: 521
[4] Du X K, Guo J T.A superheater tube superalloy GH 2984 with excellent properties[J]. Acta Metall. Sin., 2005, 41(11): 1221
[4] (杜秀魁, 郭建亭. 一种性能优异的过热器管材用高温合金GH 2984[J]. 金属学报, 2005, 41(11): 1221)
[5] Husain T, Syed A U, Simms N J.Fireside corrosion of superheater materials in coal/biomass co-fired advanced power plants[J]. Oxid. Met., 2013, 80: 529
[6] Holcomb G R, Tylcaak J, Meier G H, et al.Fireside corrosion in oxy-fuel combustion of coal[J]. Oxid. Met., 2013, 80: 599
[7] Lu J T, Gu Y F, Yang Z.Coal ash induced corrosion of three candidate materials for superheater boiler tubes of advance ultrasuperitical power station[J]. Corros. Sci. Prot. Technol., 2014, 26(3): 205
[7] (鲁金涛, 谷月峰, 杨珍. 3种700 ℃级超超临界燃煤锅炉备选高温合金煤灰腐蚀行为研究[J]. 腐蚀科学与防护技术, 2014, 26(3): 205)
[8] Hussain T, Syed A U, Simms N J.Trend in fireside corrosion damage to superheaters in air and oxy-firing of coal/biomass[J]. Fuel, 2013, 113: 787
[9] Jiang Y, Zhao S Q, Li W G.Corrosion behavior of modified Ni based alloy Inconel 740H in simulated coal ash and flue gas environments[J]. Mater. Mech. Eng., 2008, 32(12): 29
[9] (江涌, 赵双群, 李维根. 改进型Inconel 740镍基高温合金在模拟煤灰和烟气环境中的腐蚀行为[J]. 机械工程材料, 2008, 32(12): 29)
[10] Wang S H, Du X K, Guo J T, et al.Anticorrosion performance of GH 2984 alloy under various environmental conditions[J]. Corros. Sci. Prot. Technol., 2002, 14(5): 284
[10] (王淑荷, 杜秀魁, 郭建亭等. 舰用GH984合金在不同环境中的腐蚀性能[J]. 腐蚀科学与防护技术, 2002, 14(5): 284)
[11] Patel S J, Baker B A, Gollihue R D.Nickel base superalloys for next generation coal fired AUSC power plants[J]. Procedia Eng., 2013, 55: 246
[12] Gosia S, Hasbeidy D, J?rg M, et al.Impact of oxy-fuel combustion on fly ash transformations and resulting corrosion behavior of alloys 310 and 617[J]. Energy Procedia, 2013, 37: 1462
[13] Hack H, Stanko G.Effect of fuel composition and temperature on fireside corrosion resistance of materials for advanced ultrasupercritical coal fired power plants[J]. Energy Mater., 2007, 2(4): 241
[14] Gosia S B, Maier J, Scheffknecht G.Impact of oxy-fuel combustion on the corrosion behavior of advanced austenitic superheater materials[J]. Energy Procedia, 2011, 4: 2035
[15] Gosia S B, Maier J, Scheffknecht G, et al.Fireside corrosion during oxyfuel combustion considering various SO2 contents [A]. 7th Trondheim CCS Conference[C]. Trondheim, 2013
[16] Syed A U, Simms N J, Oakey J E.Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass[J]. Fuel, 2012, 101: 62
[17] Zeng Z, Nasten K, Cai Z, et al.Effect of coal ash on the performance of alloys in simulated oxy-fuel environments[J]. Fuel, 2014, 30(117): 133
[18] Gagliano M, Hack H, Stanko G.Update on the fireside corrosion resistence of proposed advance ultersupercritical superheater and reheater materials: Laboratory and fieid test results [A]. The 34th clear conference on coal utilization and fuel systems[C]. Clearwater FL, 2009
[19] Natesan K, Park J H.Fireside and steamside corrosion of alloys for USC plants[J]. Int. J. Hydrogen Energy, 2007, 32: 3689
[20] Hack H, Stanko G, Gagliano M S.Fireside corrosion resistance of proposed USC superhester and reheater materials: Laboratory and field test results [A]. 33th international technical conference on coal utilization & fuel systems[C]. Clearwater, 2008
[21] Li M S.High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001
[21] (李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001)
[22] Srivastava S C, Godiwalla K M, Banerjee M K.Review fuel ash corrosion of boiler and superheater tubes[J]. J. Mater. Sci., 1997, 32(4): 835
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[5] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[7] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[8] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[9] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[10] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[11] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[12] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[13] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[14] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[15] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.