Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 260-266    DOI: 10.11902/1005.4537.2015.201
  研究报告 本期目录 | 过刊浏览 |
5A90铝锂合金显微组织及海洋大气环境腐蚀行为
苏艳(),张伦武,钟勇
中国兵器工业第五九研究所 重庆 400039
Marine Atmospheric Corrosion Behavior of 5A90 Al-Li Alloy
Yan SU(),Lunwu ZHANG,Yong ZHONG
No. 59 Institute of China Ordnance Industry, Chongqing 400039, China
全文: PDF(4908 KB)   HTML
摘要: 

采用海洋大气环境暴露实验以及XRD,OM和SEM等分析手段,对比研究了5A90铝锂合金和2D12铝合金的显微组织、腐蚀行为和力学性能,探讨了腐蚀机制。结果表明,5A90铝锂合金的主要强化相为δ ′ (Al3Li) 和T(Al2MgLi),细密析出呈弥散分布,其微观腐蚀形貌与2D12铝合金存在明显区别,即晶界和晶粒内部同时发生腐蚀,晶间腐蚀特征不明显。用腐蚀失重表征铝合金腐蚀损伤程度,5A90合金腐蚀过程不符合幂函数规律,腐蚀造成的力学损伤明显大于2D12合金的。5A90合金的原始断裂方式以撕裂和韧窝为主,环境腐蚀作用促进合金由韧性断裂向沿晶脆性断裂的转变,严重降低材料塑性。

关键词 铝锂合金显微组织腐蚀行为自然环境实验    
Abstract

The microstructure, corrosion behavior and the influence of corrosion on mechanical performance of 5A90 Al-Li alloy and 2D12 alloy were studied comparatively by means of X-ray diffraction, metallurgical analysis, scanning electron microscopy and marine atmospheric exposure test, while the relevant corrosion mechanism was also discussed. The results showed that the strengthening phases δ ′-Al3Li and T-Al2MgLi of 5A90 Al-Li alloy are fine and dispersed quite uniformly. 5A90 Al-Li alloy showed corrosion characteristics in micro-scale apparently different from 2D12 alloy, i.e. the corrosion of the former occurred simultaneously at grain boundaries and in grains. The corrosion process of 5A90 Al-Li alloy did not follow the power function in terms of corrosion mass loss. The mechanical performance degradation of 5A90 Al-Li alloy due to corrosion is apparently faster than that of 2D12 alloy. The fracture manner of 5A90 Al-Li alloy is mainly dimple fracture, while the environmental corrosion promotes the transition from ductile fracture to intergranular brittle fracture.

Key wordsAl-Li alloy    microstructure    corrosion behavior    natural environmental test
收稿日期: 2015-11-13     
基金资助:技术基础科研计划项目 (JSHS2015209C002) 资助

引用本文:

苏艳,张伦武,钟勇. 5A90铝锂合金显微组织及海洋大气环境腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.
Yan SU, Lunwu ZHANG, Yong ZHONG. Marine Atmospheric Corrosion Behavior of 5A90 Al-Li Alloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 260-266.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.201      或      https://www.jcscp.org/CN/Y2016/V36/I3/260

Alloy Li Mg Zr Mn Ni Zn Fe Cu Si Na Ti Al
5A90 1.9~2.3 4.5~6 0.08~0.15 --- --- --- 0.2 0.05 0.15 0.0015 0.1 Bal.
2D12 --- 1.2~1.8 --- 0.3~0.9 0.05 0.1 0.3 3.8~4.9 0.2 --- 0.1 Bal.
表1  5A90铝锂合金和2D12铝合金的化学成分
图1  5A90-T3和2D12-T4合金的显微组织
图2  5A90铝锂合金的XRD谱
图3  5A90铝锂合金海洋大气环境暴露不同时间后的表面形貌
Alloy Test time/a
0.5 1 1.5 2 2.5 3 4
5A90 0.648 0.865 1.250 0.846 1.030 0.294 0.670
2D12 2.737 1.999 2.125 1.620 1.815 1.137 1.350
表2  5A90和2D12合金的平均腐蚀速率
图4  5A90和2D12合金腐蚀深度拟合曲线
图5  5A90和2D12合金暴露不同时间的腐蚀截面
图6  5A90铝锂合金腐蚀截面SEM像
图7  5A90和2D12合金的拉伸性能趋势图
图8  5A90铝锂合金拉伸断口SEM像
[1] LI J F, Zheng Z Q, Chen Y L, et al.A1-Li alloys and their application in aerospace industry[J]. Aerosp. Mater. Technol., 2012, 42(1): 13
[1] (李劲风, 郑子樵, 陈永来等. 铝锂合金及其在航天工业上的应用[J]. 宇航材料工艺, 2012, 42(1): 13)
[2] Chen J.The performance characteristics of Al-Li alloys and their application in aeroplane[J]. Civil Aircraft Design Res., 2010, (1): 39
[2] (陈健. 铝锂合金的性能特点及其在飞机中的应用研究[J]. 民用飞机设计与研究, 2010, (1): 39)
[3] Lequeu P.Advances in aerospace aluminum[J]. Adv. Mater. Proc., 2008, (2): 47
[4] Cui L, Li X Y, He D Y, et al.The laser welding line microstructure characteristics of 5A90 aluminum lithium alloy[J]. Trans. China Weld. Inst., 2010, 31(9): 77
[4] (崔丽, 李晓延, 贺定勇等. 5A90铝锂合金激光焊焊缝微观组织特佂[J]. 焊接学报, 2010, 31(9): 77)
[5] Cai H N.The Brief Describe of Weapon Arming Basic Material System [M]. Beijing: National Defence Industry Publishing Company, 2007: 504
[5] (才鸿年. 武器装备基本材料体系要览 [M]. 北京: 国防工业出版社, 2007: 504)
[6] Chen Y L, Du Z H, Zhang Y W, et al.Influence of heat treatment on intercrystalline corrosion and spalling corosion of new high-strengthAl-Li alloy[J]. Aerosp. Mater. Technol., 2011, 41(2): 87
[6] (陈永来, 杜志惠, 张宇伟等. 热处理对新型高强铝锂合金晶间腐蚀和剥蚀性能的影响[J]. 宇航材料工艺, 2011, 41(2): 87)
[7] Chen Y Y, Zheng Z Q, Wei X Y, et al.Intergranular corrosion and exfoliation corosion behaviors of 2197 AI-Li alloy with different aging treatments[J]. Corros. Prot., 2010, 31(1): 29
[7] (陈圆圆, 郑子樵, 魏修宇等. 2197铝锂合金在不同热处理状态下的晶间腐蚀及剥蚀行为[J]. 腐蚀与防护, 2010, 31(1): 29)
[8] Li J F, Chen W J, Zhao X S, et al.Corrosion behavior of 2195 and 1420 Al-Li alloys in neutral 3.5%NaCl solution under tensile stress[J]. Trans. Nonferrous Met. Soc. China, 2006, 16(5): 1171
[9] Yue X U, Wang X, Yan Z, et al.Corrosion properties of light-weight and high-strength 2195 Al-Li alloy[J]. Chin. J. Aeronautics, 2011,24(5): 681
[10] Buchheit R G, Moran J P, Stoner G E.Localized corrosion behavior of alloy 2090: The role of microstructure heterogeneity[J]. Corrosion, 1990, 46(8): 610
[11] Davó B, de Damborenea J J. Use of rare earth salts as electrochemical corrosion inhibitors for an Al-Li-Cu(8090) alloy in 3.56%NaCl[J]. Electrochim. Acta, 2004, 49(27): 4957
[12] Liu S M, Wang Z G.Fatigue properties of 8090 Al-Li alloy processedby equal-channel angular pressing[J]. Scr. Mater., 2003, 48(10): 1421
[13] Cui Y H, Zhu Z Y, Liu S T, et al.The corrosion behaviors and mechanism of 1420 Al-Li[J]. Scr. Mater., 1996, 34(5): 781
[14] Feng Z H, Lu Z, Su H, et al.Study of the microstructure and tensile properties of 5A90 aluminum lithium alloy[J]. J. Hunan Univ., 2011, 38(12): 52
[14] (冯朝辉, 陆政, 苏海等. 5A90铝锂合金显微组织及力学性能的研究[J]. 湖南大学学报, 2011, 38(12): 52)
[15] Li J F, Zheng Z Q, Ren W D.Function mechanism of secondary phase on localized corrosion of Al alloy[J]. Mater. Rev., 2005, 19(2): 81
[15] (李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制[J]. 材料导报, 2005, 19(2): 81)
[16] Zhang X M, Ye L Y, Liu Y W, et al.Formation mechanism of gradient-distributed particles and their effects on grain structure in 01420 Al-Li alloy[J]. J. Central South Univ. Technol., 2008, 15(2): 147
[17] Ma T, Wang Z Y, Han W.A review of atmospheric corrosion of aluminum and aluminum alloys[J]. Corros. Sci. Prot. Technol., 2004, 16(3): 155
[17] (马腾, 王振尧, 韩薇. 铝和铝合金的大气腐蚀[J]. 腐蚀科学与防护技术, 2004, 16(3): 155)
[18] Moran J P, Starke E A, Stoner G E, et al.The influence of composition and microstructure on the corrosion behavior of two AlLiX alloys[J]. Corrosion, 1987, 43(6): 374
[19] Yi J L, Chen L, Chen J, et al.Function mechanism of main secondary phases generated by alloying on localized corrosion of Al-Li alloys[J]. Corros. Prot., 2011, 32(10): 822
[19] (易俊兰, 陈磊, 陈洁等. 合金化中主要析出相对铝锂合金局部腐蚀的影响机制研究进展[J]. 腐蚀与防护, 2011, 32(10): 822)
[1] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[5] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[7] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[8] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[9] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[10] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[11] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[12] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[13] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[14] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[15] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.