Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (4): 313-320    DOI: 10.11902/1005.4537.2015.151
  研究报告 本期目录 | 过刊浏览 |
库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响
张弟1,梁平1(),张云霞2,史艳华1,秦华1
1. 辽宁石油化工大学机械工程学院 抚顺 113001
2. 辽宁石油化工大学继续教育学院 抚顺 113001
Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel
Di ZHANG1,Ping LIANG1(),Yunxia ZHANG2,Yanhua SHI1,Hua QIN1
1. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2. Continual Education Institute, Liaoning Shihua University, Fushun 113001, China
全文: PDF(5215 KB)   HTML
摘要: 

通过浸泡实验研究了不同浸泡时间下X80管线钢在库尔勒土壤模拟溶液中形成的腐蚀产物膜的变化规律,通过SEM观察了腐蚀产物膜的微观形貌,通过XRD分析了腐蚀产物膜的物相组成;借助循环极化曲线和电化学阻抗等方法,研究了腐蚀产物膜对X80管线钢点蚀行为的影响规律和机理。结果表明:随着浸泡时间的延长,X80管线钢在库尔勒土壤模拟溶液中形成的腐蚀产物膜逐渐增厚,致密性逐渐提高。当浸泡时间达到168 h以后,腐蚀产物膜明显地分为了内外两层。表面存在的腐蚀产物膜可以阻碍或抑制X80管线钢的点蚀行为,这主要是因为表面腐蚀产物膜减少了蚀孔萌生的几率,增大了蚀孔长大的阻力。

关键词 腐蚀产物膜点蚀循环极化X80管线钢    
Abstract

The evolution of corrosion product film formed on X80 pipeline steel in artificial solution,which simulate the soil medium at Ku'erle area, with different immersion time was studied by immersion tests, while the morphology and phase constituent of the corrosion product film was characterized by means of scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. The effect of corrosion product film on the pitting corrosion of X80 pipeline steel was investigated by cyclic polarization curves and electrochemical impedance spectroscopy (EIS). The experimental results showed that the thickness and compactness of corrosion product film gradually increased with increasing immersion time. After immersion for 168 h, the corrosion product film was clearly divided into two layers. The pitting of X80 pipeline steel may be hindered or inhibited by the corrosion product film, which may reduce the probability of pitting initiation, and increase the resistance to pitting growth.

Key wordscorrosion product film    pitting corrosion    cyclic polarization    X80 pipeline steel
    
基金资助:辽宁省教育厅2012年科学研究一般项目 (L2012127) 和2013年度辽宁省普通本科高等学校实验教学示范中心建设项目资助

引用本文:

张弟,梁平,张云霞,史艳华,秦华. 库尔勒土壤模拟溶液中形成的腐蚀产物膜对X80钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
Di ZHANG, Ping LIANG, Yunxia ZHANG, Yanhua SHI, Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 313-320.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.151      或      https://www.jcscp.org/CN/Y2016/V36/I4/313

图1  在库尔勒土壤模拟溶液中浸泡不同时间后X80管线钢表面形成的腐蚀产物膜的宏观形貌
图2  在库尔勒土壤模拟溶液中浸泡不同时间后X80管线钢表面形成的腐蚀产物膜的微观形貌及EDS结果
图3  在库尔勒土壤模拟溶液中浸泡168 h时X80管线钢表面腐蚀产物膜的XRD谱
图4  带有腐蚀产物膜的X80钢在0.5 mol/L NaHCO3+0.01 mol/L NaCl溶液中的循环极化曲线
Immersion time / h Protective potential Ep / V Break potential Eb / V S
0 -0.24 0.25 93
6 -0.23 0.26 66
12 -0.20 0.27 43
24 -0.13 0.30 27
168 +0.21 1.00 18
504 +0.19 0.90 15
1008 --- 1.10 ---
表1  循环极化曲线的拟合结果
图5  经库尔勒土壤模拟溶液腐蚀不同时间的X80钢在0.5 mol/L NaHCO3+0.01 mol/L NaCl溶液中的Nyquist曲线
图6  电化学阻抗曲线拟合所用的等效电路图
Immersion time / h Rs
Ωcm2
Qfilm
10-3 Fcm-2s-n
n1 Rfilm
Ωcm2
Qdl
10-3 Fcm-2s-n
n2 Rct
Ωcm2
0 7.46 --- --- --- 0.118 0.883 1181
6 7.94 5.750 0.683 36.9 9.575 0.647 1491
12 7.77 1.260 0.706 98.7 9.139 0.791 1666
24 7.98 0.745 0.692 124.6 1.291 0.564 2751
168 8.14 0.420 0.723 139.2 1.471 0.759 3483
504 8.02 0.303 0.789 246.7 1.569 0.801 6141
1008 8.33 0.234 0.874 312.8 1.650 0.765 8141
表2  电化学阻抗数据拟合的电化学参数
图7  带有腐蚀产物膜的X80管线钢循环极化之后的点蚀形貌
[1] Zhang C, Cheng Y F.Synergistic effects of hydrogen and stress on corrosion of X100 pipeline steel in a near-neutral pH solution[J]. J. Mater. Eng. Perform., 2010, 19(9): 1284
[2] Zhou H, Li Q S, Zhu R C.Engineering geological characteristics of saline soil in Ku'erle area in Xinjiang[J]. West-China Explor. Eng., 2000, (3): 37
[2] (周华, 李全胜, 朱瑞成. 新疆库尔勒地区盐渍土的工程地质特征[J]. 西部探矿工程, 2000, (3): 37)
[3] Fu A Q, Cheng Y F.Electrochemical polarization behavior of X70 steel in thin carbonate/bicarbonate solution layers trapped under a disbonded coating and its implication on pipeline SCC[J]. Corros. Sci., 2010, 52(7): 2511
[4] Liang P, Li X G, Du C W, et al.Influence of chloride ions on the corrosion resistance of X80 pipeline steel in NaHCO3 solution[J]. J. Univ. Sci. Technol. Beijing, 2008, 30(7): 735
[4] (梁平, 李晓刚, 杜翠薇等. Cl-对X80管线钢在NaHCO3溶液中腐蚀性能的影响[J]. 北京科技大学学报, 2008, 30(7): 735)
[5] Esalmi A, Kania R, Worthingham B, et al.Effect of CO2 and R-ratio on near-neutral pH stress corrosion cracking initiation under a disbonded coating of pipeline steel[J]. Corros. Sci., 2011, 53(6): 2318
[6] Liang P, Li X G, Du C W, et al.Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J]. Mater. Des., 2009, 30(5): 1712
[7] Hu J Y, Cao S A, Xie J L.Effect of rust layer on the corrosion behavior of carbon steel in reverse osmosis product water[J]. Acta Phys.-Chim. Sin., 2012, 28(5): 1153)
[7] (胡家元, 曹顺安, 谢建丽. 锈层对海水淡化一级反渗透产水中碳钢腐蚀行为的影响[J]. 物理化学学报, 2012, 28(5): 1153)
[8] Yang J F, Dong J H, Ke W, et al.Influence of pH values and corrosion products on low carbon steel corrosion susceptibility in borate buffer solution[J]. Acta Metall. Sin., 2011, 42(2): 152
[8] (阳靖峰, 董俊华, 柯伟等. 硼酸缓冲溶液中pH值和腐蚀产物对低碳钢活化/钝化敏感性的影响[J]. 金属学报, 2011, 42(2): 152)
[9] Liang P, Wang Y.Electrochemical behavior of X80 steel covered by a rust layer formed after short-term corrosion[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 371
[9] (梁平, 王莹. 覆有短期腐蚀产物膜的X80钢的电化学行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 371)
[10] Yu X W, Cao C N.Evaluation of corrosion resistance of rare earth metal (REM) conversion films on LY12 alloy with cyclic anodic polarization curves[J]. Corros. Sci. Prot. Technol., 2001, 13(1): 49
[10] (于兴文, 曹楚南. 循环阳极极化曲线评价LY12A1合金表面稀土转化膜耐腐蚀性能的研究[J]. 腐蚀科学与防护技术, 2001, 13(1): 49)
[11] Song S Z.Methods of Corrosion Electrochemistry Research [M]. Beijing: Chemistry Industry Press, 1988
[11] (宋诗哲. 腐蚀电化学研究方法 [M]. 北京: 化学工业出版社, 1988)
[12] Liu D X.Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2010
[12] (刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2010)
[13] Lin Y Z, Yang D J.Corrosion and Corrosion Control Theory [M]. Beijing: China Petrochemical Press, 2010
[13] (林玉珍, 杨德钧. 腐蚀和腐蚀控制原理 [M]. 北京: 中国石化出版社, 2010)
[1] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[8] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[9] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[10] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[11] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[12] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[13] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[14] 王标,杜楠,张浩,王帅星,赵晴. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[15] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.