Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 253-259    DOI: 10.11902/1005.4537.2015.128
  研究报告 本期目录 | 过刊浏览 |
低合金钢在高矿化度矿井水环境下的腐蚀行为
潘俊艳1,陈华辉1(),马峰1,谢波2,吴迎飞1,赵赋1,张祚炜1
1. 中国矿业大学 (北京) 机电与信息工程学院材料科学与工程系 北京 100083
2. 山东兖州煤业股份有限公司综机管理中心 兖州 272100
Corrosion Behavior of Low Alloy Steels in High-mineralized Mine Water
Junyan PAN1,Huahui CHEN1(),Feng MA1,Bo XIE2,Yingfei WU1,Fu ZHAO1,Zuowei ZHANG1
1. Department of Materials Science and Engineering, School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2. Management Center of Synthesizing Mining Equipment, Yanzhou Co., LTD., Yanzhou 272100, China
全文: PDF(4034 KB)   HTML
摘要: 

对27SiMn,30CrMnSi,30CrMnTi,40Cr低合金钢以及Q550等5种液压支架常用钢在高矿化度矿井水中的腐蚀性能进行了研究,并以自来水、NaCl溶液作为对比腐蚀介质进行比较。通过理论计算、盐雾实验、浸泡实验以及电化学实验进行了一系列腐蚀性能测试,同时利用SEM,EDS和XRD等分析手段对成分和形貌进行了分析。结果表明:Cr和Si对低合金钢的耐蚀性有较大影响:在Cl-环境下,Si的作用较大,Cr次之;在O2 (水、大气) 环境下,Cr的作用较大,Si次之。因此,在矿井水环境下,30CrMnTi和40Cr低合金钢具有较好的耐蚀性。低合金钢在矿井水下的腐蚀,不仅与合金元素有关,还与矿物离子形成的垢膜致密性有关。水垢一方面填充了铁锈腐蚀产物疏松多孔的结构,减缓了低合金钢的腐蚀速率;另一方面,垢下区域由于电解质溶液中氧浓度较低,又加快了腐蚀速率。在3种不同腐蚀介质中,低合金钢的腐蚀程度从大到小依次为:3.5%NaCl溶液>高矿化度矿井水>自来水。

关键词 低合金钢矿井水腐蚀    
Abstract

The corrosion behavior of low alloy steels, such as 27SiMn, 30CrMnSi, 30CrMnTi, 40Cr and Q550 was studied comparatively in high-mineralized coal mine water, tap water and NaCl solution by means of immersion test, salt spray test and electrochemical methods as well as XRD and SEM with EDS. The results showed that elements Cr and Si can significantly affect the corrosion resistance of low alloy steels: in chloride containing media, Si exhibits stronger effect than Cr on the corrosion; whereas in the presence of oxygen (water and gas phase), Cr exhibits stronger effect than Si. Therefore, 30CrMnTi and 40Cr have better corrosion resistance in the coal mine water. The corrosion behavior of the low alloy steels in the coal mine water depend not only on the role of alloying elements but also on the compactness of the formed limescale induced by mineral ions. The limescale, on one hand, can fill the porous rust layer, which slows down the corrosion rate of the steel, however, on the other hand, due to the low concentration of oxygen at the zone below the limescale, where the corrosion of the steel can be accelerated. Finally the corrosivity of three corrosive media can be ranked as the order from severe to mild: 3.5%NaCl solution, high mineralized mine water and tap water.

Key wordslow alloy steel    mine water    corrosion
收稿日期: 2015-07-22     
基金资助:兖州综采设备项目 (U03320) 资助

引用本文:

潘俊艳,陈华辉,马峰,谢波,吴迎飞,赵赋,张祚炜. 低合金钢在高矿化度矿井水环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 253-259.
Junyan PAN, Huahui CHEN, Feng MA, Bo XIE, Yingfei WU, Fu ZHAO, Zuowei ZHANG. Corrosion Behavior of Low Alloy Steels in High-mineralized Mine Water. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 253-259.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.128      或      https://www.jcscp.org/CN/Y2016/V36/I3/253

Steel C Si Mn Mo Cr B Ti Fe
27SiMn 0.24~0.34 1.10~1.40 1.10~1.40 --- --- --- --- Bal.
30CrMnSi 0.27~0.34 0.90~1.20 0.80~1.10 --- 0.80~1.10 --- --- Bal.
30CrMnTi 0.27~0.34 0.19~0.37 0.80~1.10 --- 1.00~1.30 --- 0.04~1.10 Bal.
40Cr 0.37~0.44 0.17~0.37 0.50~0.80 --- 0.80~1.10 --- --- Bal.
Q550 ≤0.18 ≤0.55 1.00~1.60 ≤0.40 ≤0.40 ≤0.003 --- Bal.
表1  实验用钢的化学成分
图1  实验用钢的理论大气腐蚀速率
图2  低合金钢在5%NaCl盐雾实验150 h后的腐蚀形貌
图3  Q550钢在盐雾实验环境下腐蚀150 h后表面锈蚀物的XRD谱
图4  低合金钢在矿井水和自来水介质中浸泡900 h后的腐蚀形貌图
图5  低合金钢在矿井水中浸泡900 h的SEM像
图6  30CrMnTi钢在矿井水中浸泡900 h后表面腐蚀产物SEM像及EDS结果
图7  低合金钢在3种不同介质中的电化学阻抗谱
[1] Zhu Y M.Statistics and analyst of coal mine safe accidents [D]. Fuxin: Liaoning Technical University, 2011
[1] (朱月敏. 煤矿安全事故统计及分析 [D]. 阜新: 辽宁工程技术大学, 2011)
[2] Wang Z H.Corrosion mechanism and protection techniques of columns of hydraulic supports[J]. Min. Mach., 2011, 39(9): 16
[2] (王志华. 液压支架立柱的腐蚀机理及其防护[J]. 矿山机械, 2011,39(9): 16)
[3] Guo H J, Sun Z P.Introduction to the quality control of hydraulic support[J]. Technol. Innov. Appl., 2012, (3): 9
[3] (郭红娟, 孙志平. 浅谈液压支架的质量控制[J]. 科技创新与应用, 2012, (3): 9)
[4] Shan Q, LI S, Liu L Z, et al.The influence on the corrosion of hydraulic support system of chloride ions in the transmission medium and preventive measures[J]. Procedia Eng., 2011, 26: 1214
[5] Melchers R E.The effects of water pollution on the immersion corrosion of mild and low alloy steels[J]. Corros. Sci., 2007, 49(8): 3149
[6] Liu S S, Yang L G, Huang X Z.To investigate the surface treatment systems of hydraulic support[J]. Coal Eng., 2007, (9): 95
[6] (刘双双, 杨雷岗, 黄孝章. 液压支架表面处理方法探讨[J]. 煤炭工程, 2007, (9): 95)
[7] Du X Y.Research of electroless plating Ni-P-based protection system on hydraulic support [D]. Fuxin: Liaoning Technical University, 2012
[7] (杜学芸. 液压支架立柱化学镀Ni-P基防护体系研究 [D]. 阜新: 辽宁工程技术大学, 2012)
[8] Hung J Z, Zuo Y.Corrosion Resistance & Corrosion Data of Materials [M]. Beijing: Chemical Industry Press, 2002
[8] (黄建中, 左禹. 材料的耐蚀性和腐蚀数据 [M]. 北京: 化学工业出版社, 2002)
[9] Chandler K A, Kilcullen M B.Corrosion-resistant low-alloy steels: A review with particular reference to atmospheric conditions in the united kingdom[J]. Br. Corros., 1970, 5(1): 24
[10] Lu Y L, Cao M X.Discussion on influencing factors of neutral salt spray test[J]. Mei Shan Technol., 2012, (1): 56
[10] (陆永亮, 曹美霞. 中性盐雾试验影响因素探讨[J]. 梅山科技, 2012, (1): 56)
[11] Cheng H P, Wang D J.Corrosion mechanisms of oxygen concentration cell in oil wells[J]. Corros. Prot. Petrochem. Ind., 2014, 31(1): 46
[11] (程海鹏, 王东江. 氧浓差电池在油井的腐蚀机理[J]. 石油化工腐蚀与防护, 2014, 31(1): 46)
[12] Jia H L, Zhao C P, Wang H.Phenomenon of oxygen concentration cell in pipeline[J]. Pipeline Tech. Equip., 2012, (3): 51
[12] (贾恒磊, 赵春平, 汪浩. 管线的氧浓差电池现象[J]. 管道技术与设备, 2012, (3): 51)
[13] He Y Q, Sun B, Liu Z Y, et al.Effects of oxide scale on industrial atmosphere corrosion of low carbon steels[J]. J. Northeastern Univ.(Nat. Sci.), 2013, 34(10): 1416
[13] (何永全, 孙彬, 刘振宇等. 氧化铁皮对低碳钢大气腐蚀行为的影响[J]. 东北大学学报 (自然科学版), 2013, 34(10): 1416
[14] Zhao H R.The form of corrosion and mechanism of action of under-deposit corrosion of boiler are researched[J]. Technol. Wind, 2015, (2): 140
[14] (赵海瑞. 锅炉垢下腐蚀的类型及其作用机理研究[J]. 科技风,2015, (2): 140)
[15] Xu S.Study of DZL2/4-1.0-W II boiler bottom under-deposit corrosion[J]. Equip. Manuf. Technol., 2013, (9): 79
[15] (徐松. DZL2/4-1.0-W II型锅炉锅筒底部垢下腐蚀探讨[J]. 装备制造技术, 2013, (9): 79)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.