Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 205-211    DOI: 10.11902/1005.4537.2015.122
  研究报告 本期目录 | 过刊浏览 |
利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度
刘静1,李晓禄1,朱崇伟1,张涛1,2(),曾冠鑫3,孟国哲1,2,邵亚薇1,2
1. 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
2. 中国科学院金属研究所 沈阳 110016
3. 塔里木油田分公司塔北勘探开发项目经理部地面部 库尔勒 841000
Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network
Jing LIU1,Xiaolu LI1,Chongwei ZHU1,Tao ZHANG1,2(),Guanxin ZENG3,Guozhe MENG1,2,Yawei SHAO1,2
1. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. North-Tarim Management Department of Exploration and Development Project, Petrochina Tarim Oilfield Company, Korla 841000, China
全文: PDF(789 KB)   HTML
摘要: 

根据气田现场工况的调研情况,应用动电位极化法测量了典型气田环境中316L不锈钢的临界点蚀温度 (CPT),并利用人工神经网络 (ANN) 技术对CPT进行了预测。结果表明,CPT随Cl-浓度升高而降低,pH值对CPT影响很小。建立的ANN模型对316L不锈钢的CPT具有良好的预测能力,可实现对气田各作业区复杂耦合环境下CPT的预测。ANN模型的预测结果表明,Cl-浓度和pH值对CPT的影响无交互作用,Cl-浓度是影响CPT的主要因素,因此Cl-将是气田防腐蚀工程的重点控制因素。

关键词 316L不锈钢气田环境临界点蚀温度人工神经网络腐蚀预测    
Abstract

316L stainless steel is widely used for enhancing the pitting resistance of pipelines in gas field. The corrosion environment is complex and diversified in different working districts of gas field. Therefore, it is necessary to develop a model for predicting the pitting resistance of pipelines serving in different corrosive environments. Critical pitting temperature (CPT) is considered as a criterion for evaluating the pitting resistance of stainless steel. Based on a survey on the operation situations of gas field, the relevant data of CPT for 316L stainless steel is acquired by potentiodynamic polarization method in solutions with various Cl- concentrations and pH values, which are selected to correspond with the real environments in operation. Then, an artificial neutral network (ANN) model is developed to predict the CPT, and therewith to compare with the measured data. The results show that the CPT decreases with the increase of Cl- concentration, but on which pH value has little influence. The developed ANN model has good ability to predict the CPT of 316L stainless steel, and can be used for the prediction of CPT in complex environments in gas field. It is also revealed that there is no interactive effect between Cl- concentration and pH value, and Cl- concentration was the main influencing factor on the CPT. Therefore, Cl- concentration will be peculiarly concerned with for the implementation of a corrosion control project in gas field.

Key words316L stainless steel    gas field    critical pitting temperature    artificial neutralnetwork    prediction
收稿日期: 2015-09-15     
基金资助:国家自然科学基金项目 (U1460202) 资助

引用本文:

刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
Jing LIU, Xiaolu LI, Chongwei ZHU, Tao ZHANG, Guanxin ZENG, Guozhe MENG, Yawei SHAO. Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 205-211.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.122      或      https://www.jcscp.org/CN/Y2016/V36/I3/205

图1  工作电极示意图[11]
图2  新疆某气田各作业区地层水中Cl-浓度及pH值分布的累积概率
图3  人工神经网络结构示意图
图4  Cl-浓度为1.4×105 mg/L,pH=4时不同温度下316L不锈钢的动电位极化曲线及击破电位随温度的变化规律
图5  不同Cl-浓度和pH值条件下316L不锈钢击破电位随温度变化曲线
pH Cl- concentration / mgL-1
3.70×103 3.70×104 8.50×104 1.40×105 2.18×105
4.0 13.7 ℃ 9.3 ℃ 9.6 ℃ 7.1 ℃ 6.4 ℃
5.5 14.0 ℃ 9.8 ℃ 9.0 ℃ 7.1 ℃ 6.6 ℃
7.0 14.1 ℃ 9.8 ℃ 9.7 ℃ 7.4 ℃ 5.4 ℃
8.5 14.2 ℃ 11.0 ℃ 9.4 ℃ 6.2 ℃ 5.2 ℃
表1  不同Cl-浓度和pH值条件下316L不锈钢的CPT
图6  316L不锈钢CPT随Cl-浓度变化规律
图7  不同pH值条件下316L不锈钢的CPT
Set pH c(Cl-)
mgL-1
CPT / ℃
Measured Predicted Residual
Train 4.0 3.70×103 13.7 13.2 -0.5
4.0 3.70×104 9.3 6.9 -2.4
4.0 1.40×105 7.1 6.0 -1.1
4.0 2.18×105 6.4 6.6 0.2
5.5 3.70×103 14.0 14.2 0.2
5.5 3.70×104 9.8 9.9 0.1
5.5 1.40×105 7.1 6.8 -0.3
5.5 2.18×105 6.6 6.4 -0.2
7.0 3.70×103 14.1 14.0 -0.1
7.0 8.50×104 9.7 9.5 -0.2
7.0 1.40×105 7.4 7.6 0.2
7.0 2.18×105 5.4 5.1 -0.3
8.5 3.70×103 14.2 14.0 -0.2
8.5 3.70×104 11.0 10.9 -0.1
8.5 8.50×104 9.4 10.2 0.8
8.5 2.18×105 5.2 7.0 1.8
Test 4 8.50×104 7.1 5.6 -1.5
5.5 8.50×104 9.0 9.7 0.7
7.0 3.70×104 9.8 11.0 1.2
8.5 1.40×105 6.2 7.5 1.3
表2  CPT预测值与实验值对比表
图8  CPT预测值与实验值对比图
图9  CPT随NaCl浓度和pH值变化的三维曲面
[1] Ramana K V S, Anita T, Mandal S, et al. Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: Experimental studies and neural network modeling[J]. Mater. Des., 2009, 30(9): 3770
[2] Brigham R J, Tozer E W.Temperature as a pitting criterion[J]. Corrosion., 1973, 29(1): 33
[3] Brigham R J, Tozer E W.Effect of alloying addition on the pitting resistance of 18%Cr austenite stainless steel[J]. Corrosion, 1974, 30(5): 161
[4] Qvarfort R.Critical pitting temperature measurements of stainless steels with an improved electrochemical method[J]. Corros. Sci., 1989, 29(8): 987
[5] Deng B, Jiang Y M, Gong J, et al.Critical pitting and repassivation temperatures for duplex stainless steel in chloride solutions[J]. Electrochim. Acta, 2008, 53(16): 5220
[6] Deng B, Jiang Y M, Hao Y W, et al.The synergetic effect of chloride and fluoride on the critical pitting temperature of 316 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28(1): 30
[6] (邓博, 蒋益明, 郝允卫等. F-和Cl-对316不锈钢临界点蚀温度的协同作用[J]. 中国腐蚀与防护学报, 2008, 28(1): 30)
[7] Ernst P, Newman R C.Explanation of the effect of high chloride concentration on the critical pitting temperature of stainless steel[J]. Corros. Sci., 2007, 49(9): 3705
[8] Thomas E Q, Liu Y A.Translated by Cha J R, et al. The Application of Artificial Intelligence in Chemical Engineering [M]. Beijing: China Petrochemical Press, 1994
[8] (Thomas E Q, Liu Y A著. 查金荣等译. 人工智能在化学工程中的应用 [M]. 北京: 中国石化出版社, 1994)
[9] Ebrahimi N, Moayed M H, Davoodi A.Critical pitting temperature dependence of 2205 duplex stainless steel on dichromate ion concentration in chloride medium[J]. Corros. Sci., 2011, 53(4): 1278
[10] Deng B, Jiang Y M, Liao J X, et al.Dependence of critical pitting temperature on the concentration of sulphate ion in chloride-containing solutions[J]. Appl. Surf. Sci., 2007, 253(18): 7369
[11] Zhang T, Wang D Y, Shao Y W, et al.A new criterion to determine the critical pitting temperature (CPT) based on electrochemical noise measurement[J]. Corros. Sci., 2012, 58: 202
[12] ASTM Designation: G 150-99, Standard test method for electrochemical critical pitting temperature testing of stainless steels[S]
[13] Moayed M H, Laycock N J, Newman R C.Dependence of the critical pitting temperature on surface roughness[J]. Corros. Sci., 2003, 45(6): 1203
[14] Hoseinpoor M, Momeni M, Moayed M H, et al.EIS assessment of critical pitting temperature of 2205 duplex stainless steel in acidi?ed ferric chloride solution[J]. Corros. Sci., 2014, 82: 197
[15] Kenny E D, Ramón S C, Paredes R S C, et al. Arti?cial neural network corrosion modeling for metals in an equatorial climate[J]. Corros. Sci., 2009, 51(10): 2266
[16] Li X G.Material Corrosion and Protection [M]. Changsha: Central South University Press, 2009
[16] (李晓刚. 材料腐蚀与防护 [M]. 长沙: 中南大学出版社, 2009)
[17] Wu W W, Jiang Y M, Liao J X, et al.The effect of Cl- on critical pitting temperature of 304 and 316 stainless steels[J]. Corros. Sci. Prot. Technol., 2007, 19(1): 16
[17] (吴玮巍, 蒋益明, 廖家兴等. Cl离子对304、316不锈钢临界点蚀温度的影响[J]. 腐蚀科学与防护技术, 2007, 19(1): 16)
[18] Laycock N J, Moayed M H, Newman R C.Metastable pitting and the critical pitting temperature[J]. J. Electrochem. Soc., 1998, 145(8): 2622
[19] Newman R C.2001 Whitney award lecture: Understanding the corrosion of stainless steel[J]. Corrosion, 2001, 57(12): 1030
[1] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[3] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[4] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[5] 郭宝会, 邱友绪, 李海龙. 人工神经网络在钛合金表面Ni-SiC复合电镀工艺中的应用[J]. 中国腐蚀与防护学报, 2017, 37(4): 389-394.
[6] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[7] 丁祥彬,孙华,俞国军,周兴泰. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[8] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[9] 何进, 晏敏胜, 杨丽景, Masoumeh Moradi, 宋振纶, 蒋业华. S32750超级双相不锈钢在NaCl溶液中的临界点蚀温度及电化学腐蚀机理[J]. 中国腐蚀与防护学报, 2015, 35(2): 106-112.
[10] 陈宇, 陈旭, 刘彤, 王冠夫, 王彦亮. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[11] 常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[12] 聂鸳鸳, 段继周, 杜敏, 侯保荣. 天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[13] 檀玉, 梁可心, 张胜寒. 光电化学法研究316L不锈钢在高温水中生成氧化膜的半导体性质[J]. 中国腐蚀与防护学报, 2013, 33(6): 491-495.
[14] 杜向前, 段继周, 翟晓凡, 栾鑫, 张杰, 侯保荣. 铁还原细菌Shewanella algae生物膜对316L不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[15] 韩夏冰 高志明 党丽华 王 迎 毕慧超. Q235钢在模拟大气环境中
早期腐蚀图像小波包分析
[J]. 中国腐蚀与防护学报, 2013, 33(3): 211-215.