Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (1): 25-30    DOI: 10.11902/1005.4537.2015.099
  本期目录 | 过刊浏览 |
晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响
彭新元1,2(),周贤良1,2,华小珍2
1. 南京航空航天大学材料科学与技术学院 南京 211106
2. 南昌航空大学 江西省金属材料微结构调控重点实验室 南昌 330063
Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel
Xinyuan PENG1,2(),Xianliang ZHOU1,2,Xiaozhen HUA2
1. School of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(4648 KB)   HTML
摘要: 

通过动电位再活化法,微观形貌观察以及表面相对电子功函数研究了晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响.不同晶粒尺寸试样通过改变固溶时间来获得.结果表明:经相同敏化处理后,316LN不锈钢的晶间腐蚀敏感程度随着晶粒尺寸的增加而降低.细晶粒试样晶界有腐蚀沟,并连成网状,且晶界明显粗化,而粗晶粒试样无明显腐蚀.表面相对电子功函数数据表明,相对于细晶粒试样,粗晶粒试样表面电子结构分布更稳定.

关键词 动电位再活化法晶粒尺寸晶间腐蚀    
Abstract

The effect of grain size on the susceptibility to intergranular corrosion of 316LN stainless steel was investigated by means of electrochemical potentiokinetic reactivation test and electronic work function measurement, as well as microstructure characterization. Steel samples of various grain sizes were produced by heat treating the steel at 1100 ℃ for different duration. The result showed that the degree of sensitization decreases with increasing grain size; corrosion pits occur at grain boundaries and thereby form a network-like pits-chain for samples of fine grains. In the contrast, no obvious corrosion occurred on samples of coarse grain. The results of electronic work function measurement imply that the surface electronic density of states and charge density distributions for steel of coarse grains are much stable than that of fine grains.

Key wordselectrochemical potentiokinetic reactivation    grain size    intergranular corrosion
    
基金资助:国家高技术研究发展计划项目 (2012AA03A507),江西省教育厅科技项目 (GJJ14534),江西省金属材料微结构调控重点实验室开放基金项目 (JW201223001) 和江苏高校优势学科建设工程资助项目 (PAPD) 资助

引用本文:

彭新元,周贤良,华小珍. 晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
Xinyuan PENG, Xianliang ZHOU, Xiaozhen HUA. Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 25-30.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.099      或      https://www.jcscp.org/CN/Y2016/V36/I1/25

图1  经不同条件固溶热处理后试样的微观组织
Solution
treatment time / min
Maximum
grain size /μm
Average
grain size /μm
10 35 22
60 56 42
240 114 96
600 212 193
表1  不同工艺处理后试样的晶粒尺寸
图2  不同晶粒尺寸试样敏化后的微观组织
图3  敏化后试样的SEM像和EDS结果
Average grain size / μm Ir / mA Ia / mA Rr / %
22 9.50 22.5 42.22
42 12.80 79.3 16.14
96 1.30 114.0 1.14
193 0.03 39.6 0.07
表2  不同晶粒尺寸试样的晶间腐蚀敏感性
图4  不同晶粒尺寸的316LN不锈钢的DLEPR曲线
图5  不同晶粒尺寸的316LN不锈钢经DLEPR测试后的表面形貌
图6  不同晶粒尺寸316LN不锈钢的EWF三维分布图
[1] Song S K, Liu Z Y, Zhen J N, et al.Study on AP1000 main piping of the third generation nuclear power[J]. Heavy Casting Forging, 2011, (1): 1
[1] (宋树康, 刘志颖, 郑建能等. 第三代APl000核电主管道的研制[J]. 大型铸锻件, 2011, (1): 1)
[2] Lu H X.Research and development of AP1000 reactor coolant pipe in china[J]. Shanghai Met., 2010, 32(4): 29
[2] (卢华兴. APl000核电站主管道国产化研制进展[J]. 上海金属, 2010, 32(4): 29)
[3] Zhang S L, Li M J, Wang X B, et al.Intergranular corrosion of 18-8 austenitic stainless steel[J]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 124
[3] (张述林, 李敏娇, 王晓波等. 18-8奥氏体不锈钢的晶间腐蚀[J]. 中国腐蚀与防护学报, 2007, 27(2): 124)
[4] Miyaji N, Abe Y, Ukai S, et al. Post-irradiation creep rupture properties of FBR grade 316 SS structural material [J]. J. Nucl. Mater., 1999, 271/272: 173
[5] Yae Kina A, Souza V M, Tavares S S M, et al. Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service[J]. Mater. Charact., 2008, 59: 651
[6] Onchi T, Dohi K, Soneda N, et al.Mechanism of irradiation assisted stress corrosion crack initiation in thermally sensitized 304 stainless steel[J]. J. Nucl. Mater., 2005, 340: 219
[7] Li S X, Li L, Yu S R, et al.Investigation of intergranular corrosion of 316L stainless steel diffusion bonded joint by electrochemical potentiokinetic reactivation[J]. Corros. Sci., 2011, 53(1): 99
[8] Singh R, Chattoraj I, Kumar A, et al. The effects of cold working on sensitization and intergranular corrosion behavior of AISI 304 stainless steel [J]. Metall. Mater. Trans., 2003, 34(11)A: 2441
[9] Zha X Q, Liang J, Zhang X Y, et al.Applied study of electrochemical potentiokinetic reactivation method[J]. Electrochemistry, 2011, 17(3): 347
[9] (查小琴, 梁健, 张欣耀等. 电化学动电位再活化法 (EPR法) 的应用研究[J]. 电化学, 2011, 17(3): 347)
[10] China National Standardization Management Committee. Corrosion of metals and alloys-Electrochemical potentiokin-etic reactivation measurement using the double loop method [S]. Beijing: Standards Press of China, 2012
[10] (中国国家标准化管理委员会. GB/T 29088-2012金属和合金的腐蚀-双环电化学动电位再活化测量方法 [S] . 北京: 中国标准出版社, 2012)
[11] Luo H, Xiang D, Guo X F.The relation between austenitic stainless steel crystal grain size and speed of intercrystalline corrosion[J]. J. Shangdong Jianzhu Univ., 2008, 23(5): 406
[11] (罗辉, 项东, 郭晓斐. 奥氏体不锈钢晶粒度对晶间腐蚀速度的影响[J]. 山东建筑大学学报, 2008, 23(5): 406)
[12] Yu X, Chen S, Liu Y, et al.A study of intergranular corrosion of austenitic stainless steel by electrochemical potentio- dynamic reactivation, electron back-scattering diffraction and cellular automaton[J]. Corros. Sci., 2010, 52(6): 1939
[13] Yu S R, He Y N, Li S X, et al.Effect of grain size on susceptibility to intergranular corrosion for austenitic stainless steel[J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 70
[13] (俞树荣, 何燕妮, 李淑欣等. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 70)
[14] Jin W S, Lang Y P, Rong F, et al.Researeh of EPR on the susceptibility to intergranular attach of aus tenitic stainless steel[J]. J. Chin. Soc. Corros. Prot., 2007, 27(1): 54
[14] (金维松, 郎宇平, 荣凡等. EPR法评价奥氏体不锈钢晶间腐蚀敏感性的研究[J]. 中国腐蚀与防护学报, 2007, 27(1): 54)
[15] Apachitei I, Fratila L E, Duszczyk J.Microgalvanic activity of an Mg-Al-Ca-based alloy studied by scanning Kelvin probe force microscopy[J]. Scr. Mater., 2007, 57: 1012
[16] Li W, Li D Y.Influence of surface morphology on corrosion and electronic behavior[J]. Acta Mater., 2006, 54: 445
[17] Wang J, Wang S Q.Correlation between galvanic corrosion and electronic work function of Al alloy surfaces[J]. Acta Phys.-Chim. Sin., 2014, 30(3): 551
[17] (王健, 王绍青. 铝合金表面电偶腐蚀与电子功函数的关系[J]. 物理化学学报, 2014, 30(3): 551
[1] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[2] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[3] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[4] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[5] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[6] 许龙, 姚希, 李劲风, 蔡超. 2099铝锂合金晶间腐蚀行为与时效制度的相关性[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
[7] 袁军涛, 吴细毛, 王文, 朱圣龙, 王福会. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.
[8] 俞树荣,何燕妮,李淑欣,王璐. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
[9] 冯万里,张乐福,马明娟. 轧制变形对690合金特殊晶界比例及耐晶间腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[10] 饶思贤,万章,宋光雄,张铮,钟群鹏. 基于规则的晶间腐蚀和氢致开裂的失效模式诊断[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.
[11] 胡轶嵩,王俭秋,柯伟,韩恩厚. 690TT合金在高温含铅碱液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(6): 427-432.
[12] 孙涛,邓博, 徐菊良,李劲,蒋益明. 氮、铌添加对304奥氏体不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
[13] 李朝兴;李劲风;BIRBILIS Nick;贾志强;郑子樵. Mg2Si及Si粒子在Al-Mg-Si合金晶间腐蚀中协同作用机理的多电极偶合研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 107-113.
[14] 王玮;罗明;张启富;柳伟. 硝酸级(NAG)310L不锈钢焊接接头在含Cr6+的HNO3溶液中的耐蚀性[J]. 中国腐蚀与防护学报, 2010, 30(1): 78-82.
[15] 汪兵; 刘清友; 贾书君; 王向东; 卢吉; 董瀚 . 晶粒尺寸对普碳钢耐工业环境下大气腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2007, 27(4): 193-196 .