Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (2): 137-142    DOI: 10.11902/1005.4537.2015.061
  本期目录 | 过刊浏览 |
负向电压对AZ31B镁合金表面微弧氧化膜结构和耐蚀性的影响
崔学军(),李晓飞,李特,林修洲
四川理工学院材料科学与工程学院 材料腐蚀与防护四川省重点实验室 自贡 643000
Negative Voltage on Structure and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Magnesium Alloy
Xuejun CUI(),Xiaofei LI,Te LI,Xiuzhou LIN
Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
全文: PDF(1026 KB)   HTML
摘要: 

以Na2SiO3-NaOH-NaF溶液为电解液,采用双极性非对称脉冲电源的恒压加载方式,制备AZ31B镁合金表面微弧氧化膜。以扫描电镜和极化曲线为表征手段,研究在固定正向电压 (260 V) 条件下,负向电压对膜层形貌及腐蚀性能的影响。结果表明:负向电压40 V,氧化处理10~15 min,可获得致密层较厚的耐蚀微弧氧化膜;负向电压高于60 V,膜层容易烧蚀,表面产生大尺寸微裂纹,导致膜层耐蚀性能降低。适当的负向电压能够显著提高膜层的致密性,但必需控制电压的范围和氧化处理的时间。

关键词 镁合金微弧氧化负向电压耐蚀致密性    
Abstract

Micro-arc oxidation (MAO) coatings were fabricated on AZ31B Mg-alloy in a Na2SiO3-NaOH-NaF aqueous solution by varying applied negative voltages with a bipolar asymmetric pulsing power. Then the effect of the applied negative voltage on the microstructure and corrosion resistance of MAO coatings were studied by SEM and polarization curves. The results show that a corrosion resistant coating can be obtained by an applied negative voltage 40 V for a duration 10~15 min. However, the surface morphology of the MAO coating exhibited obviously many micro-cracks when the applied negative voltage is above 60 V, resulting in a poor corrosion resistance. Therefore, the value of the negative voltage and the oxidation time should be carefully matched so that to prepare a MAO coating with appropriate compactness and corrosion resistance.

Key wordsmagnesium alloy    micro-arc oxidation    negative voltage    corrosion resistance    compactness
    
基金资助:四川省教育厅重点项目 (16ZA0244),自贡市科技创新苗子工程 (2015CXM02) 和材料腐蚀与防护四川省重点实验室开放基金项目 (2013CL01) 资助

引用本文:

崔学军,李晓飞,李特,林修洲. 负向电压对AZ31B镁合金表面微弧氧化膜结构和耐蚀性的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 137-142.
Xuejun CUI, Xiaofei LI, Te LI, Xiuzhou LIN. Negative Voltage on Structure and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 137-142.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.061      或      https://www.jcscp.org/CN/Y2016/V36/I2/137

图1  不同负向电压下MAO膜的表面形貌
图2  不同负向电压下MAO膜的截面形貌
图3  不同负向电压下MAO样品在3.5%NaCl溶液中的极化曲线
Negative
voltage / V
ba
mVdec-1
-bc
mVdec-1
-Ecorr
mV
Icorr
μAcm-2
Rp
kΩcm2
BlankAZ31B 42.4 125.9 1464 105.80 0.154
0 33.6 240.0 1523 3.40 3.200
20 320.8 136.2 1400 3.03 13.700
40 271.9 157.2 1386 0.49 88.400
60 223.5 214.8 1413 4.71 10.100
表1  与图3极化曲线相对应的拟合电化学参数值
图4  40 V负向电压下处理不同时间MAO样品在3.5% NaCl溶液中的极化曲线
Time
min
ba
mVdec-1
-bc
mVdec-1
-Ecorr
mV
Icorr
μAcm-2
Rp
kΩcm2
10 381.4 111.1 1381 0.27 136.2
15 396.7 111.7 1389 0.07 557.2
30 366.9 111.2 1427 1.45 25.6
表2  与图4极化曲线相对应的拟合电化学参数值
图5  氧化10 min 形成的MAO膜的厚度随负向电压变化的曲线
图6  40 V负向电压下氧化时间对MAO膜厚的影响
[1] Song G L.Recent progress in corrosion and protection of magnesium alloys[J]. Adv. Eng. Mater., 2005, 7(7): 563
[2] Vladimirov B V, Krit B L, Lyudin V B, et al.Microarc oxidation of magnesium alloys: A review[J]. Surf. Eng. Appl. Electrochem., 2014, 50(3): 195
[3] Zhang L, Zhang J Q, Chen C F, et al.Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications[J]. Corros.Sci., 2015, 91: 7
[4] Wang M J, Wang R C, Peng C Q, et al.Progress of anodic coatings on magnesium alloys[J]. Corros. Sci. Prot. Technol., 2012, 24(6):508
[4] (王美娟, 王日初, 彭超群等. 镁合金阳极氧化研究进展[J]. 腐蚀科学与防护技术, 2012, 24(6): 508)
[5] Sankara Narayanan T S N, Song P II, Lee M H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges[J]. Prog. Mater. Sci., 2014, 60: 1
[6] Song G L, Shi Z M.Corrosion mechanism and evaluation of anodized magnesium alloys[J]. Corros. Sci., 2014, 85: 126
[7] Cui X J, Liu C H, Yang R S, et al.Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism[J]. Surf. Coat. Technol., 2015, 269: 228
[8] Arrabal R, Mota J M, Criado A, et al.Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy[J]. Surf. Coat. Technol., 2012, 206: 4692
[9] Tang Y, Zhao X, Jiang K, et al.The influences of duty cycle on the bonding strength of AZ31B magnesium alloy by microarc oxidation treatment[J]. Surf. Coat. Technol., 2010, 205: 1789
[10] Guo Q Z, Zhang W, Du K Q, et al.Effect of negative potential on compactness of plasma electrolytic oxidation coatings on magnesium alloy AZ31B by electrochemical impedance spectrum[J]. J. Chin. Soc. Corros. Prot., 2012, 32(6): 467
[10] (郭泉忠, 张伟, 杜克勤等. 电化学阻抗谱研究负向电压对AZ31B镁合金微弧氧化陶瓷层致密性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 467)
[11] He Z K, Tang P S.Study on micro-arc oxidation coating on different metal[J]. Mater. Prot., 2002, 35(4): 31
[11] (贺子凯, 唐培松. 不同基体材料微弧氧化生成陶瓷膜的研究[J].材料保护, 2002, 35(4): 31)
[12] Du Y, Lin X Z, Cui X J, et al.Research progress of electrolyte additives in micro-arc oxidation process for magnesium alloys[J].Mater. Prot., 2013, 46(10): 44
[12] (杜勇, 林修洲, 崔学军等. 镁合金微弧氧化电解液及其添加剂的研究进展[J]. 材料保护, 2013, 46(10): 44)
[13] Yang W, Zhao Y F, Yang S Y.Effects of characteristic and parameters of power supply on micro-arc oxidation coatings property and energy consumption[J]. Mater. Eng., 2010, (2): 86
[13] (杨威, 赵玉峰, 杨世彦. 微弧氧化电源特性和参数对膜层性能及电能消耗的影响[J]. 材料工程, 2010, (2): 86)
[14] Hou W A, Hu J H, Song X J.The influence of power supply mode on the process and performance of coating of micro-arc oxidation[J]. Nonferrous Met.(Extr. Metall.), 2007, (S1): 122
[14] (侯伟骜, 胡江辉, 宋希剑. 电源工作模式对微弧氧化过程和膜层性能的影响[J]. 有色金属 (冶炼部分), 2007, (S1): 122)
[15] Jin F Y, Chu P K, Xu G D, et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes [J]. Mater. Sci. Eng., 2006, A435/436: 123
[16] Zhang R F, Shan D Y, Han E-H, et al.Effects of current mode on properties of anodic coatings of magnesium alloys[J]. Rare Met. Mater. Eng., 2006, 35(9): 1392
[16] (张荣发, 单大勇, 韩恩厚等. 电流模式对镁合金微弧氧化膜性能的影响[J]. 稀有金属材料与工程, 2006, 35(9): 1392)
[17] Wu D, Liu X D, Lv K.Effects of reverse voltage and oxidation time on coating formation on AZ91D magnesium alloy[J]. Spec. Cast. Nonferrous Alloy., 2008, 28(7): 564
[17] (乌迪, 刘向东, 吕凯. 负向电压与氧化时间对AZ91D微弧氧化膜层形成特性的影响[J]. 特种铸造及有色合金, 2008, 28(7): 564)
[18] Liu R M, Guo F, Li P F.Effect of voltage on formation of ceramic coating prepared by micro-arc oxidation on aluminum alloy[J].Trans. Mater. Heat Treat., 2008, 29(1): 137
[18] (刘荣明, 郭锋, 李鹏飞. 电压对铝合金微弧氧化陶瓷层形成的影响[J]. 材料热处理学报, 2008, 29(1): 137)
[19] Hwang I J, Hwang D Y, Ko Y G, et al.Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation[J]. Surf. Coat. Technol., 2012, 206: 3360
[20] Liu Z D, Fu H, Sun M J, et al.Influence of negative voltage on coating of magnesium alloy micro-arc oxidation[J]. Light Met., 2009, 15(4): 45
[20] (刘忠德, 付华, 孙茂坚等. 负向电压对镁合金微弧氧化膜层的影响[J]. 轻金属, 2009, 15(4): 45)
[21] Cui X J, Wang R, Wei J S, et al.Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on AZ31B Mg alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34(6): 495
[21] (崔学军, 王荣, 魏劲松等. 电参数对AZ31B 镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 495)
[22] Pan Y K, Wang D G, Chen C Z.Effect of negative voltage on the microstructure,degradability and in vitro bioactivity of microarc oxidized coatings on ZK60 magnesium alloy[J]. Mater. Lett., 2014, 119: 127
[23] Mi T, Jiang B, Liu Z, et al.Plasma formation mechanism of microarc oxidation[J]. Electrochim. Acta, 2014, 123: 369
[24] Mohannad M S, Bosta A, Ma K J.Suggested mechanism for the MAO ceramic coating on aluminium substrates using bipolar current mode in the alkaline silicate electrolytes[J]. Appl. Surf. Sci., 2014, 308: 121
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[4] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[6] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[8] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[9] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[10] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[11] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[12] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[13] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[14] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[15] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.