Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (2): 157-164    DOI: 10.11902/1005.4537.2015.053
  本期目录 | 过刊浏览 |
新喀里多尼亚弧菌对Cu在人工海水中腐蚀行为的影响
闫涛1,2,宋振纶2,杨丽景2(),肖涛1,2,侯利锋1()
1. 太原理工大学材料科学与工程学院 太原 030024
2. 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201
Effect of Vibrio Neocaledonicus sp. on Corrosion Behavior of Copper in Artificial Sea Water
Tao YAN1,2,Zhenlun SONG2,Moradi Masoumeh2,Lijing YANG2(),Tao XIAO1,2,Lifeng HOU1()
1. College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024,China
2. Key Laboratory of Marine New Materials and Related Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(1151 KB)   HTML
摘要: 

分离出了一种具有高度缓蚀作用的新喀里多尼亚弧菌,通过电化学测量方法和表面分析技术研究了该细菌对Cu在人工海水中腐蚀行为的影响。结果表明,新喀里多尼亚弧菌使Cu的开路电位明显负移;在有菌介质中,Cu表面的阻抗值显著增大;同时腐蚀电流密度明显降低,说明该细菌可以抑制Cu在人工海水中的腐蚀。CLSM结果显示,Cu表面吸附有大量的细菌,而SEM观察到Cu表面生物膜并不多,说明这种抑制作用是由吸附在Cu表面的细菌引起的,而与Cu表面的生物膜关系不大。

关键词 Cu新喀里多尼亚弧菌细菌吸附缓蚀作用    
Abstract

In our previous research, the corrosion inhibitory effect of marine Vibrio neocaledonicus sp. bacterium was introduced for the first time. EIS results showed that the corrosion resistance of carbon steel increased by more than sixty fold in the presence of this bacteria. The aim of this paper is the investigation of bacterial influence on the corrosion process of unalloyed copper. Different electrochemical measures (open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization measurements) and surface analysis techniques (field emission scanning electron microscopy (FESEM) and confocal laser scanning microscopy (CLSM)) were used. The results showed that: in the presence of bacteria, EOCP (open circuit potential) of copper shifted to negative direction about 500 mV/(vs SCE); while the charge transfer resistance (Rct) and the corrosion current density (Icorr) increased and decreased respectively. These results confirmed that the Vibrio neocaledonicus sp. could lessen the corrosion of unalloyed copper. CLSM images showed bacteria could adsorbed on the copper easily, but no obvious biofilm were found on the copper surface. So, it seems the corrosion inhibition of the bacteria is due to bacterial attachment in the first hours of exposure. The mechanism has been discussed in this paper.

Key wordscopper    Vibrio neocaledonicus.sp.    adsorption    corrosion inhibition
    
基金资助:国家自然科学基金项目 (51374151),宁波市产业技术创新及成果产业化重大项目 (2013B10046),山西省科技重大专项项目 (20111101053),山西省煤基重点科技攻关项目和山西省自然科学基金项目 (2011011020-2) 资助

引用本文:

闫涛,宋振纶,杨丽景,肖涛,侯利锋. 新喀里多尼亚弧菌对Cu在人工海水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 157-164.
Tao YAN, Zhenlun SONG, Moradi Masoumeh, Lijing YANG, Tao XIAO, Lifeng HOU. Effect of Vibrio Neocaledonicus sp. on Corrosion Behavior of Copper in Artificial Sea Water. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 157-164.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.053      或      https://www.jcscp.org/CN/Y2016/V36/I2/157

图1  新喀里多尼亚弧菌在培养液中的细菌生长曲线
Condition Time
d
Initial
mass / g
Final
mass / g
Mass
loss / g
Corrosion rateg / (m2h) η
2 11.4659 11.4636 0.0023 0.0568 ---
Without bacteria 5 13.2491 13.2420 0.0071 0.0709 ---
10 12.1149 12.1008 0.0141 0.0697 ---
2 12.0927 12.0921 0.0006 0.0148 0.26
With bacteria 5 12.5334 12.5327 0.0007 0.0069 0.10
10 13.2878 13.2869 0.0009 0.0044 0.06
表1  Cu在无菌、有菌溶液中的浸泡失重
图2  Cu分别在无菌和有菌介质中开路电位随浸泡时间的变化曲线
图3  Cu在有菌介质中浸泡不同时间的EIS谱
图4  Cu在无菌介质中浸泡不同时间的EIS谱
图5  Cu在浸泡前和浸泡在无菌介质中及浸泡在有菌溶液中的等效电路图
Condition Time
d
Rs
Ωcm2
Y01
μSsecncm-2
Rf
Ωcm2
Rct
kΩcm2
Y02
μSsecncm-2
0 2.56 56.01 21.99 0.86 361.8
Without bacteria 2 1.67 479.70 15.92 1.95 389.5
5 5.75 332.10 21.62 4.54 268.7
10 5.50 105.10 223.40 0.94 503.6
With bacteria 2 2.81 25.84 135.00 250.90 55.4
5 3.86 24.35 110.60 276.20 54.5
10 2.91 24.08 106.20 113.50 58.9
表2  Cu在有菌介质及无菌介质中的电化学阻抗谱的等效电路拟合值
图6  Cu分别浸泡在无菌和有菌介质中不同时间后的极化曲线
图7  纯Cu试样浸泡在有菌介质中1和10 d后的CLSM图
图8  纯Cu试样分别浸泡在有菌介质和无菌介质中10 d后的SEM像
图9  镀铜硅片浸泡在有菌介质中不同时间的SEM像
Condition Time / d C P O N Cu Cl S Mg Si
1 0.14 3.28 9.49 --- 87.08 --- --- --- ---
With bacteria 2 0.03 13.39 17.58 --- 67.00 --- 2.00 --- ---
5 0.89 0.88 20.73 12.03 48.42 9.82 7.23 --- ---
1 --- --- 6.07 --- 91.70 2.23 --- --- ---
Without bacteria 2 --- --- 29.55 --- 56.31 1.48 --- 12.66 ---
5 --- --- 34.02 --- 45.32 --- --- 16.62 4.04
表3  镀铜硅片浸泡在有菌介质中不同时间的EDS结果
图10  细菌在Cu表面附着及生物膜的形成机理
[1] Booth G H, Tiller A k. Cathodic characteristics of mild steel in suspensions of sulphate-reducing bacteria[J]. Corros. Sci., 1968, 8: 583
[2] Antony P, Chongdar S, Kumar P, et al.Corrosion of 2205 duplex stainless steel in chloride medium containing sulfate-reducing bacteria[J]. Electrochim. Acta, 2007, 52(12): 3985
[3] Nagiub A, Mansfeld F.Evaluation of microbiological influenced corrosion inhibition using electrochemical noise analysis[J]. Corros. Sci., 2001, 43: 2001
[4] Jayaraman A, Cheng E T, Earthman J C, et al.Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion[J]. Appl. Microbiol. Biotechnol., 1997, 48: 11
[5] Masoumeh M.Effect of marine Pseudoalteromonas sp. on the microstructure and corrosion behavior of 2205 duplex stainless steel[J]. Corros. Sci., 2014, 84: 103
[6] Benjamin E, Narcis M D, Ghangrekar M M, et al.Application of electro-active biofilms[J]. Biofouling, 2010, 26(1): 57
[7] Jackson G, Beyenal H, Rces W M, et al.Growing reproducible biofilms with respect to structure and viable cell counts[J]. J. Microbiol. Methods, 2001, 47: 1
[8] Masoumeh M.Introducing a novel bacterium, Vibrio neocaledonicus sp., with the hignest corrosion inhibition efficiency[J]. Electrochem. Commun., 2015, 51: 64
[9] Liu H F, Xu L M, Zheng J S.Effect of biofilm on corrosion of carbon steel[J]. J. Chin. Soc. Corros. Prot., 2000, 20(1): 41
[9] (刘宏芳, 许立铭, 郑家燊. SRB生物膜与碳钢腐蚀的关系[J]. 中国腐蚀与防护学报, 2000, 20(1): 41)
[10] Potekhina J S.Role of microorganisms in corrosion inhibition of metals in aquatic habitats[J]. Appl. Micriol. Biotechnol., 1999, 52: 639
[11] Du X Q, Duan J Z, Hou B R.Corrosion behavior of 316L stainless steel influenced by iron-reducing bacteria shewanella algae biofilms[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 363
[11] (杜向前, 段继周, 侯宝荣. 铁还原细菌Shewanella algae生物膜对316L不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013,33(5): 363)
[12] Kumari K.Characterisation and anti-biofilm activity of extracellular polymeric substances from oceanobacillus iheyensis[J]. Carbo hydr. Polym., 2014, 101: 29
[13] Valcaece M B.The influence of the surface condition on the adhension of pseudomonas fluorescens (ATCC 17552) to copper and aluminium brass[J]. Int. Biodeterior. Biodegrad., 2002, 50: 61
[1] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[2] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[3] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[4] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[5] 和佳乐, 王菊琳. 初始pH值和Cl-浓度对CuCl水解的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.
[6] 郭娜, 类延华, 刘涛, 常雪婷, 尹衍升. 植酸水溶液中聚吡咯涂层在Cu基体上的制备及其在腐蚀防护中的应用[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
[7] 王海媛, 卫英慧, 杜华云, 刘宝胜, 郭春丽, 侯利锋. 绿色缓蚀剂SDDTC对AZ31B镁合金的缓蚀作用及吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 62-67.
[8] 肖斌,向军淮,张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 69-73.
[9] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[10] 左翔,蒋裕丰,迟挺,胡鑫,曹冬梅,蔡烽. 新型含长链烷基苯并三唑缓蚀剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[11] 冯林,王燕华,钟莲,王佳,李爱娇,金晓晓. 短期贮存对金属铜腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 375-380.
[12] 骆立立, 费敬银, 王磊, 林西华, 王少兰. 组分调制Cu/Ni多层膜的合金化及其合金化镀层的耐蚀特性[J]. 中国腐蚀与防护学报, 2014, 34(6): 523-531.
[13] 齐东梅, 成若义, 杜小青, 陈宇, 张昭, 张鉴清. Cu及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2014, 34(5): 389-398.
[14] 张彭辉, 王燕华, 彭欣, 刘在健, 周媛媛, 王佳. 采用丝束电极技术研究液滴下Cu腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(5): 459-464.
[15] 吴军, 王秀静, 罗睿, 张三平, 周建龙. 环境变迁对Q235和09CuPCrNi-A钢早期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(5): 465-471.