Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 267-272    DOI: 10.11902/1005.4537.2015.050
  研究报告 本期目录 | 过刊浏览 |
生物医用挤压态Mg-Zn-Gd镁合金的组织与耐电化学腐蚀性能
冯晓伟1,2,戚文军1(),黎小辉1,李志成2
1. 广东省工业技术研究院 (广州有色金属研究院) 广州 510650
2. 中南大学材料科学与工程学院 长沙 410083
Microstructure and Electrochemical Corrosion Properties of Biomedical Extruded Mg-Zn-Gd Alloys
Xiaowei FENG1,2,Wenjun QI1(),Xiaohui LI1,Zhicheng LI2
1. Guangzhou Research Institute of Nonferrous Metals, Guangzhou 510650, China
2. College of Materials Science and Engineering, Central South University, Changsha 410083,China
全文: PDF(4050 KB)   HTML
摘要: 

通过光学显微镜 (OM) 和扫描电子显微镜 (SEM) 观察了Mg-xZn-yGd (x=1~3,y=0~3) 合金的挤压态组织及腐蚀形貌。结果表明:挤压态组织得到细化,平均晶粒尺寸从Mg-3Zn合金的 (30±3) μm降到Mg-3Zn-1Gd合金的 (10±2) μm,说明挤压过程发生了明显的动态再结晶,第二相沿挤压方向趋于带状分布。Mg-xZn-yGd合金的腐蚀以点蚀为主,在浸泡的时间段内,Mg-3Zn-2Gd合金的腐蚀速率最快,Mg-3Zn合金的腐蚀速率最低。经固溶处理后,Mg-3Zn-2Gd和Mg-3Zn-3Gd合金的腐蚀速率由原来的 (0.605±0.025) 和 (0.352±0.021) mg/(cm2h)分别降为 (0.085±0.010) 和 (0.167±0.020) mg/(cm2h)。随着Zn含量的增加,自腐蚀电流密度逐渐降低,高频区容抗半环逐渐增大;随着Gd含量的增加,自腐蚀电流密度逐渐先升高后降低,高频区容抗半环先降低后升高。Mg-3Zn合金的自腐蚀电流密度最小,为8.65×10-3 (mA/cm2);而其Faraday电阻Rt最大,为3312 Ω。

关键词 Mg-Zn-Gd合金组织电化学腐蚀    
Abstract

The microstructure and corrosion morphology of extruded alloys Mg-xZn-yGd (x=1~3, y=0~3) were observed by optical microscopy (OM), scanning electron microscopy (SEM). Results show that after extrusion the microstructure of the alloys is obviously refined and further refined by Gd addition, i.e. the average grain size decreases from (30±3) μm for Mg-3Zn to (10±2) μm for Mg-3Zn-3Gd. The dynamic recrystallization occurs during the extrusion, while the second phase particles tend to distribute as belts along the extrusion direction. Mg-xZn-yGd alloy is sensitive to pitting corrosion in the Hank's solution. Among others the corrosion of Mg-3Zn-2Gd is the fastest,while that of Mg-3Zn is the slowest. After solid solution treatment, the corrosion rate of Mg-3Zn-2Gd and Mg-3Zn-3Gd decreases from (0.605±0.025) and (0.352±0.021) mg/(cm2h) to (0.085±0.010) and (0.167±0.020) mg/(cm2h) respectively. With increasing Zn content the corrosion current density decreases and the high-frequency capacitance increases gradually; with the increase of Gd content, the corrosion current density and high-frequency capacitance of the alloys rise firstly and then reduce gradually. Mg-3Zn alloy exhibits aminimum corrosion current density (8.65×10-3 mA/cm2)and a maximum Faraday resistance Rt (3312 Ω).

Key wordsMg-Zn-Gd alloy    microstructure    electrochemistry    corrosion
收稿日期: 2015-04-10     
基金资助:广东省中国科学院全面战略合作项目 (2011A090100004),广东省产学研重大项目 (2010A090200078) 和天河区科技攻关项目 (201406YG069) 资助

引用本文:

冯晓伟,戚文军,黎小辉,李志成. 生物医用挤压态Mg-Zn-Gd镁合金的组织与耐电化学腐蚀性能[J]. 中国腐蚀与防护学报, 2016, 36(3): 267-272.
Xiaowei FENG, Wenjun QI, Xiaohui LI, Zhicheng LI. Microstructure and Electrochemical Corrosion Properties of Biomedical Extruded Mg-Zn-Gd Alloys. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 267-272.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.050      或      https://www.jcscp.org/CN/Y2016/V36/I3/267

图1  挤压态Mg-xZn-yGd合金的金相图
图2  固溶处理后挤压态Mg-3Zn-yGd合金的金相图
图3  挤压态Mg-3Zn和Mg-3Zn-2Gd合金的XRD谱
图4  Mg-xZn-yGd合金在Hank's溶液中的平均腐蚀速率随时间变化曲线
图5  T4和T6处理态Mg-3Zn-yGd (y=2,3) 合金在Hank's溶液中浸泡72 h的平均腐蚀速率
图6  Mg-3Zn-2Gd合金浸泡3 d后腐蚀产物的XRD谱
图7  Mg-3Zn-yGd (y=0~2) 合金在Hank's模拟体液中浸泡3 d后的腐蚀形貌
图8  挤压态Mg-xZn-yGd合金在Hank's模拟体液中的极化曲线、阻抗谱及等效电路
Alloy Ecorr / V Icorr / mAcm-2
Mg-3Zn-1Gd -1.442 1.088×10-2
Mg-3Zn-2Gd -1.6417 1.674×10-1
Mg-3Zn-3Gd -1.4093 5.857×10-2
Mg-2Zn-1Gd -1.4678 8.556×10-2
Mg-1Zn-1Gd -1.4243 1.451×10-1
Mg-3Zn -1.3015 8.65×10-3
表1  Mg-xZn-yGd合金极化曲线拟合结果
[1] Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728
[2] Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
[3] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[4] Wang J Y, Wicklund B H, Gustilo R B, et al.Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro[J]. Biomaterials, 1996, 17: 2233
[5] Li X, Qi W, Zheng K, et al.Enhanced strength and ductility of Mg-Gd-Y-Zr alloys by secondary extrusion[J]. J. Magnes. Alloy., 2013, 1: 54
[6] Yu H, Yan H, Chen J, et al.Effects of minor Gd addition on microstructures and mechanical properties of the high strain-rate rolled Mg-Zn-Zr alloys[J]. J. Alloy. Compd., 2014, 586: 757
[7] Srinivasan A, Huang Y, Mendis C L.Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys[J]. Mater. Sci. Eng., 2014, A595: 224
[8] Hort N, Huang Y, Fechner D, et al.Magn esium alloys as implant materials: Principles of property design for Mg-RE alloys[J]. Acta Biomater., 2010, 6: 1714
[9] Zhong L Y.The effect of rare earth elements on microstructure and corrosion behavior of AZ91 magnesium alloys [D]. Hangzhou: Zhejiang University, 2008
[9] (钟丽英. 稀土元素对AZ91镁合金组织结构和腐蚀性为的影响[D]. 杭州: 浙江大学, 2008)
[10] Atrens A, Liu M, Abidin N.Corrosion mechanism applicable to biodegradable magnesium implants[J]. Mater. Sci. Eng., 2011, 176: 1609
[11] Zhang X.Study on microstructure, properties and corrosion behavior of Mg-RE binary magnesium alloys [D]. Beijing: General Research Institute for Nonferrous Metals, 2013
[11] (张新. Mg-RE基稀土镁合金组织、性能与腐蚀机理研究 [D]. 北京: 有色金属研究院, 2013)
[12] Atrens A, Song G L, Cao F, et al.Advances in Mg corrosion and research suggestions[J]. J. Magnes. Alloy., 2013, 1(3): 177
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[12] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[13] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[15] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.