Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (2): 150-156    DOI: 10.11902/1005.4537.2015.037
  本期目录 | 过刊浏览 |
新喀里多尼亚弧菌胞外聚合物对硫酸中Q235碳钢的缓蚀作用
肖涛1,2,Masoumeh Moradi2,宋振纶2,杨丽景2,闫涛1,2,侯利锋1()
1. 太原理工大学材料科学与工程学院 太原 030024
2. 中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室宁波 315201
Inhibition Effect of Exopolysaccharide of Vibrio Neocaledonicus sp. on Q235 Carbon Steel inSulphuric Acid Solution
Tao XIAO1,2,Moradi Masoumeh2,Zhenlun SONG2,Lijing YANG2,Tao YAN1,2,Lifeng HOU1()
1. College of Material Science and Engineering, Taiyuan University of Technology, Taiyuan 030024,China
2. Key Laboratory of Marine New Materials and Related Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
全文: PDF(871 KB)   HTML
摘要: 

采用电化学阻抗测试、极化曲线测试和扫描电镜观察等方法研究了在25 ℃条件下新喀里多尼亚弧菌胞外聚合物 (EPS) 对Q235碳钢在0.5 mol/L H2SO4溶液中的缓蚀作用。结果表明:该弧菌EPS能够在碳钢表面形成一层较为致密的Fe-EPS保护层,可有效抑制H2SO4溶液对Q235钢的腐蚀。随着EPS浓度的增加,缓蚀效率增大;当EPS浓度为1.0 g/L时,缓蚀效率最高。EPS在Q235钢表面的吸附为自主的化学吸附且符合Langmuir吸附模型。通过Fourier红外吸收光谱确定了该EPS的成分。

关键词 Q235碳钢弧菌胞外聚合物缓蚀化学吸附    
Abstract

The inhibition effect of exopolysaccharide (EPS) extracted from Vibrio neocaledonicus sp. on carbon steel Q235 has been studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electronic microscopy (SEM). The results showed that EPS could inhibit effectively the corrosion for Q235 steel in solution of 0.5 mol/L H2SO4 because of that a film of Fe-EPS could formed on carbon steel during the corrosion process. The inhibition efficiency reached the maximum when the concentration of EPS was 1.0 g/L. The absorption of EPS on Q235 steel was chemisorption and obeyed the Langmuir adsorption isotherm. The composition of EPS was identified by using FTIR.

Key wordsQ235 carbon steel    vibrio    exopolysaccharide    inhibition    chemisorption
    
基金资助:国家自然科学基金项目 (51374151),山西省科技重大专项项目 (20111101053),山西省煤基重点科技攻关项目及山西省自然科学基金项目 (2011011020-2) 资助

引用本文:

肖涛,Masoumeh Moradi,宋振纶,杨丽景,闫涛,侯利锋. 新喀里多尼亚弧菌胞外聚合物对硫酸中Q235碳钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2016, 36(2): 150-156.
Tao XIAO, Moradi Masoumeh, Zhenlun SONG, Lijing YANG, Tao YAN, Lifeng HOU. Inhibition Effect of Exopolysaccharide of Vibrio Neocaledonicus sp. on Q235 Carbon Steel inSulphuric Acid Solution. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 150-156.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.037      或      https://www.jcscp.org/CN/Y2016/V36/I2/150

图1  Q235钢在含不同浓度EPS的 0.5 mol/L H2SO4溶液中的电化学阻抗谱
Concentration
gL-1
Rs
Ωcm2
Rct
Ωcm2
CPEdl
μFcm-2
L
Hcm2
RL
Ωcm2
n η / % θ
Blank 2.68 38.82 16.5 --- --- 0.80 --- ---
0.2 0.87 156.3 20.3 16.88 58.27 0.87 75.2 0.752
0.4 3.15 165.7 15.8 39.26 73.36 0.83 76.6 0.766
0.8 8.12 240.6 11.4 57.95 78.16 0.86 83.8 0.838
1.0 1.08 242.5 7.7 95.26 81.94 0.87 84.0 0.840
1.2 4.19 89.9 34.8 20.01 24.78 0.80 56.8 0.568
表1  Q235钢在含不同浓度EPS的0.5 mol/L H2SO4溶液中腐蚀的阻抗参数
图2  未加入EPS和加入EPS的EIS等效电路
图3  Q235钢在含不同浓度EPS的0.5 mol/L H2SO4溶液中的极化曲线
Concentration
gL-1
Ecorr.obs
V
I
mAcm-2
bc
Vdec-1
ba
Vdec-1
Rp
Ωcm2
Corrosion rate mma-1 η / %
Blank -0.485 0.4518 -0.053 0.106 2.406 5.228 ---
0.2 -0.472 0.1074 -0.036 0.100 6.429 1.243 76.2
0.4 -0.480 0.1020 -0.066 0.115 14.59 1.159 77.4
0.8 -0.456 0.0943 -0.041 0.134 11.25 0.255 79.1
1.0 -0.456 0.0480 -0.041 0.132 21.65 0.129 89.4
1.2 -0.467 0.2526 -0.063 0.109 5.296 2.923 44.1
表2  Q235钢在含不同浓度EPS的0.5 mol/L H2SO4溶液中腐蚀的动电位极化参数
图4  Q235钢在含不同浓度EPS的0.5 mol/L H2SO4溶液中浸泡2 h后表面形貌的SEM像
图5  EPS的Fourier红外吸收光谱
图6  Q235钢在25 ℃时添加EPS的0.5 mol/L H2SO4溶液中的Langmuir吸附模型
[1] Lozano I, Mazario E, Likhanova N V, et al.Corrosion behaviour of API 5LX52 steel in HCl and H2SO4 media in the presence of 1,3-dibencilimidazolio acetate and 1,3-dibencilimidazolio dodecanoate ionic liquids as inhibitors[J]. Mater. Chem. Phys., 2014, 147: 191
[2] Zhao J M, Li J.Corrosion inhibition performance of carbon steel in brine solution containing H2S and CO2 by novel gemini surfactants[J]. Acta Phys.-Chim. Sin., 2012, 28(3): 623
[2] (赵景茂, 李俊. 新型双子表面活性剂在H2S和CO2盐水溶液中对碳钢的缓蚀性能[J]. 物理化学学报, 2012, 28(3): 623)
[3] Banerjee S, Srivasrava V, Singh M M.Chemically modified natural polysaccharide as green corrosion inhibitor for mild steel in acidic medium[J]. Corros. Sci., 2012, 59: 35
[4] Umoren S A, Ogbobe O, Igwe I O, et al.Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives[J]. Corros. Sci., 2008, 50:1998
[5] Lee W, Lewandowski Z, Nielsen P H, et al.Role of sulfate-reducing bacteria in corrosion of mild steel: A review[J]. Biofouling, 1995, 8: 165
[6] Jin J T, Wu G X, Zhang Z H, et al.Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J]. Bioresour. Technol., 2014, 165: 162
[7] Yildiz F H, Visick K L.Vibrio biofilms: so much the same yet so different[J]. Trends Microbiol., 2009, 17: 109
[8] Kavita K, Mishra A, Jha B.Isolation and physico-chemical characterisation of extracellular polymeric substances produced by the marine bacterium Vibrio parahaemolyticus[J]. Biofouling, 2011, 27(3): 309
[9] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[9] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社,2002)
[10] Farag A A, Hegazy M A.Synergistic inhibition effect of potassium iodide and novel Schiff bases on X65 steel corrosion in 0.5 M H2SO4[J]. Corros. Sci., 2013, 74: 168
[11] Guo W J, Chen S H, Huang B D, et al.Protection of self-assembled monolayers formed from triethyl phosphate and mixed self-assembled monolayers from triethyl phosphate and cetyltrimethyl ammonium bromide for copper against corrosion[J]. Electrochim. Acta, 2006, 52(1): 108
[12] Ganesh V, Pal S K, Kumar S, et al.Self-assembled monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold—A study of electron transfer reaction using cyclic voltammetry and electrochemical impedance spectroscopy[J]. J. Colloid Interface Sci., 2006, 296:195
[13] Nwodo U U, Okoh A I.Characterization and ?occulation properties of biopolymeric ?occulant (glycosaminoglycan) produced by Cellulomonas sp. Okoh[J]. J. Appl. Microbiol., 2013, 114: 1325
[14] Kavita K, Mishra A, Jha B.Extracellular polymeric substances from two biofilm forming Vibrio species: Characterization and applications[J]. Carbohydr. Polym., 2013, 94: 882
[15] Iye A, Mody K, Jha B.Characterization of an exopolysaccharide produced by a marine enterobacter cloacae[J]. Indian J. Exp. Biol., 2005, 43: 467
[16] Freitas F, Alves V D, Pais J, et al. Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol[J]. Bioresour. Technol., 2009, 100: 859
[17] Cao B, Shi L, Brown R, et al.Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: Characterization by infrared spectroscopy and proteomics[J]. Environ. Microbiol., 2011, 13: 1018
[18] Bhaskar P V, Bhosle N B.Bacterial extracellular polymeric substances (EPS): A carrier of heavy metals in the marine food-chain[J]. Environ. Int., 2006, 32: 191
[19] Moon S H, Park C S, Kim Y J, et al.Biosorption isotherms of Pb (II) and Zn (II) on Pestan, an extracellular polysaccharide, of Pestalotiopsis sp. KCTC 8637P[J]. Process Biochem., 2006, 41: 312
[20] Zarrouk A, Hammouti B, Zarrok H, et al.N-containing organic compound as an effective corrosion inhibitor for copper in 2M HNO3: Weight loss and quantum chemical study[J]. Der Pharm.Chem., 2011, 3(5): 263
[21] Atkins P W.Physical Chemistry [M]. 6th Ed. Oxford: Oxford University Press, 1999
[22] Chongdar S, Gunasekaran G, Kumar P.Corrosion inhibition of mild steel by aerobic biofilm[J]. Electrochim. Acta, 2005, 50: 4655
[23] Dong Z H, Liu T, Liu H F.Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J]. Biofouling, 2011, 27(5): 487
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[8] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[9] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[10] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[11] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[12] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[13] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[14] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[15] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.