Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (1): 79-86    DOI: 10.11902/1005.4537.2015.030
  本期目录 | 过刊浏览 |
沉积硫对FeS及FeCO3膜结构及耐蚀性影响
沈秋燕,刘宏芳,刘烈炜()
华中科技大学化学与化工学院 材料与环境化学研究所 武汉 430074
Influence of Sulfur Deposition on Corrosion Behavior of Carbon Steel L360 Covered with FeS- or FeCO3-film
Qiuyan SHEN,Hongfang LIU,Liewei LIU()
School of Chemistry and Chemical Engineering, Institute of Materials and Environmental Chemistry,Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(4613 KB)   HTML
摘要: 

在常压,80 ℃条件下采用阳极电解NaHCO3溶液制备FeCO3膜,利用Na2S在高温下水解生成H2S及H2S与碳钢反应生成FeS的方法制备FeS膜.采用静态失重,电化学阻抗谱,动电位极化和环境扫描电镜等技术研究膜的耐蚀性能及沉积硫下膜的破坏规律.结果表明,pH值为7和3的模拟溶液中,无硫粉存在时FeCO3和FeS膜均具有较好的耐蚀性,且FeCO3膜的耐蚀性最好;与中性条件相比,膜在酸性溶液中耐蚀性较差.沉积硫下膜的耐蚀性基本失效,且在pH值为7时预膜试片均发生局部腐蚀,其中FeCO3膜下的局部腐蚀最严重且从边缘扩展,FeS膜下腐蚀则较均匀,而在pH值为3时试样均属于均匀腐蚀.

关键词 FeCO3膜FeS膜耐蚀性硫沉积    
Abstract

A FeCO3 film and FeS film were prepared on carbon steel L360 by anodic electrolyzing the steel in NaHCO3 solution and immersing the steel in Na2S solution respectively in air at 80 ℃. Then, the corrosion performance of the steel covered with the two films beneath sulfur-deposition in an artificial formation water was studied by means of electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and environmental scanning electron microscope (ESEM). The results indicated that for the case without S deposits, the two films showed good protectiveness in the artificial solutions with pH 7 and 3 respectively, and the FeCO3 film was better than the FeS film. The two films were better in the neutral solution than in acidic solution. However, for the case with S deposits, the two films loosed their protectiveness in the two solutions. Moreover, in the solution with pH 7, the steel beneath FeCO3 film suffered from local corrosion seriously, while the steel beneath FeS film suffered from uniform corrosion. Besides, in the solution with pH 3, the steels with or without films all suffered from uniform corrosion.

Key wordsFeCO3 film    FeS film    corrosion resistance    sulfur deposition
    

引用本文:

沈秋燕,刘宏芳,刘烈炜. 沉积硫对FeS及FeCO3膜结构及耐蚀性影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 79-86.
Qiuyan SHEN, Hongfang LIU, Liewei LIU. Influence of Sulfur Deposition on Corrosion Behavior of Carbon Steel L360 Covered with FeS- or FeCO3-film. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 79-86.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.030      或      https://www.jcscp.org/CN/Y2016/V36/I1/79

图1  L360碳钢试片在不同溶液中浸泡后所得膜的XRD和Raman谱
图2  膜的SEM像及EDS分析结果
Condition Acidity Corrosion rate / mma-1
Without film FeS film FeCO3 film
Without sulfur pH=7 0.24 0.13 0.09
pH=3 1.20 0.41 0.36
Sulfur deposition pH=7 22.37 22.19 20.97
pH=3 38.99 37.35 34.98
表1  L360碳钢在模拟溶液中的腐蚀速率
图3  L360碳钢在模拟溶液中的EIS谱
图4  L360碳钢在模拟溶液中的电化学阻抗谱等效电路图
图5  L360碳钢在模拟溶液中的极化曲线
图6  模拟溶液中L360碳钢的拟后结果
图7  FeCO3膜试片沉积硫腐蚀截面形貌图
图8  L360碳钢硫沉积腐蚀形貌图
Condition Rct / Ωcm2 Rf1 / Ωcm2 Rp / Ωcm2
Without film With FeS film With FeCO3 film Without film With FeS film With FeCO3 film Without film With FeS film With FeCO3 film
Without sulfur pH=7 186.70 258.90 392.60 31.31 52.29 77.62 218.01 311.19 470.22
Without sulfur pH=3 23.77 28.73 59.85 3.50 2.10 9.30 27.27 30.83 69.15
Sulfur deposition pH=7 3.26 3.44 5.56 1.43 1.61 1.95 4.69 5.06 7.51
Sulfur deposition pH=3 1.58 1.88 5.12 1.56 1.57 1.07 3.15 3.45 6.18
表2  L360碳钢在模拟溶液中的EIS谱拟合电化学参数Rct,Rf1及Rp的值
[1] Smith P, Roy S, Swailes D, et al.A model for the corrosion of steel subjected to synthetic produced water containing sulfate chloride and hydrogen sulfide[J]. Chem. Eng. Sci., 2011, 66(23): 5775
[2] Fenn M E, Ross C S, Schilling S W, et al.Atmospheric deposition of nitrogen and sulfur and preferential canopy consumption of nitrate in forests of the Pacic Northwest, USA[J]. Forest. Ecol. Manage., 2013, 302: 240
[3] Hu J H, He S L, Zhao J Z, et al.Sulfur deposition experiment in the presence of non-movable water[J]. J. Pet. Sci. Eng., 2012, 100: 37
[4] Endo T, Yagoh H, Sato K, et al.Regional characteristics of dry deposition of sulfur and nitrogen compounds at EANET sites in Japan from 2003 to 2008[J]. Atmos. Environ., 2011, 45(6): 1259
[5] David J P.Elemental sulfur formation in natural gas transmission pipelines [D]. Australia: The University of Western Australia, 2005
[6] Pack D J, Parks D W, Chesnoy A B.Gas pipeline preferential site selection occurrence for elemental sulphur & other particle matter formation & deposition[J]. J. Petrol. Sci. Eng., 2012, 94: 12
[7] Zhang D T.Elemental sulfur deposition and corrosion mechanism research on high sour gas field gathering and transportation system[D]. Wuhan: Huazhong University of Science and Technology, 2012
[7] (张大同. 高酸性气田集输系统元素硫沉积及腐蚀机理研究 [D]. 武汉: 华中科技大学, 2012)
[8] Fan Z, Li H C, Liu J Y, et al.The elemental sulfur deposition and its corrosion in high sulfur gas fields[J]. Nat. Gas Ind., 2013, 33(9): 102
[8] (范舟, 李洪川, 刘建仪等. 高含硫气田元素硫沉积及其腐蚀[J]. 天然气工业, 2013, 33(9): 102)
[9] Xu Y M, Guo P, Huang W G.Study on deposition of element sulfur for hgh sulfurous gas reservoirs[J]. Nat. Gas Explor. Dev., 2005, 27(4): 52
[9] (徐艳梅, 郭平, 黄伟岗. 高含硫气藏元素硫沉积研究[J]. 天然气勘探与开发, 2005, 27(4): 52)
[10] Zhu Z J, Sand K W, Teevens P J.A numberical study of under-deposit pitting corrosion in sour petroleum pipelines [A]. NACE International[C]. Houston, 2010
[11] Zeng S P, Wen Y X, Zhang Q M, et al.Investigating on the prediction model of sulfur deposition in high sour gas-well[J]. Procedia Eng., 2012, 29: 4267
[12] Zhang G A, Yu N, Yang L Y et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel[J]. Corros. Sci., 2014,86: 202
[13] Palacios C A, Shadley J R.CO2 corrosion of N80 steel at 71 ℃ in a two-phase flow system[J]. Corros. Sci., 1993, 49(8): 686
[14] Zhang Q, Li Q A, Wen J B, et al.Progress in research on CO2/H2S corrosion of tubular goods[J]. Corros. Prot., 2003, 24(7): 277
[14] (张清, 李全安, 文九巴等. CO2/H2S对油气管材的腐蚀规律及研究进展[J]. 腐蚀防护, 2003, 24(7): 277)
[15] Lin G F, Bai Z Q, Zhao X W, et al.Effect of temperature on scales of carbon dioxide corrosion products[J]. Acta Petrolei. Sin., 2004, 25(3): 101
[15] (林冠发, 白真权, 赵新伟等. 温度对二氧化碳腐蚀产物膜形貌特征的影响[J]. 石油学报, 2004, 25(3): 101)
[16] Ma H, Cheng X, Li G, et al.The influence of hydrogen sulfide on cossosion of iron under different conditions[J]. Corros. Sci., 2000, 42(10): 1669
[17] Bourdoiseau J A, Jeannin M, Sabot R, et al.Characterisation of mackinawite by Raman spectroscopy: Effects of crystallisation, drying and oxidation[J]. Corros. Sci., 2008, 50(11): 3247
[18] Zhang Y, Moloney J.Corrosion monitoring under iron sulfide deposit: Testing method development [A]. NACE International[C]. Houston, 2014
[19] Herbert R B, benner S G, Pratt A R, et al. Surface chemistry and morphology of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria[J]. Chem. Geol., 1998, 144(1): 87
[20] Gao M, Pang X, Gao K.The growth mechanism of CO2 corrosion production films[J]. Corros. Sci., 2011, 53(2): 557
[21] Tan Z H, Zhu Z P, Pei F, et al.Influence of DC stray current on corrosion behavior of grounding grid materials in soils with different moisture content[J]. Corros. Sci. Prot. Technol., 2013, 25(3): 207
[21] (谭铮辉, 朱志平, 裴峰等. 直流杂散电流对不同含水率土壤中接地网材料腐蚀特性的影响[J]. 腐蚀科学与防护技术, 2013, 25(3): 207)
[22] Liang R J, Liu L W, Han Y L.Sulfur deposition on corrosion of N80 carbon steel in high acid environment[J]. Corros. Sci. Prot. Technol., 2013, 25(3): 184
[22] (梁荣晶, 刘烈炜, 韩燕玲. 高酸性条件下S沉积对N80碳钢腐蚀的研究[J]. 腐蚀科学与防护技术, 2013, 25(3): 184)
[23] Yang B, Tian S B, Zhao S L.Study of corrosivity of different sulfur compounds of crude oil[J]. Corros. Sci. Prot. Technol., 2005, 17(6): 385
[23] (杨波, 田松柏, 赵杉林. 不同形态硫化合物腐蚀行为的研究[J]. 腐蚀科学与防护技术, 2005, 17(6): 385)
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[11] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[12] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[13] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[14] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[15] 崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.