Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (1): 59-66    DOI: 10.11902/1005.4537.2015.023
  本期目录 | 过刊浏览 |
聚苯胺/TiO2/环氧涂层的制备及耐蚀性研究
张山1,周丽娜2,简璐1,王煦1()
1. 西南石油大学材料科学与工程学院 成都 610500
2. 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
Preparation and Corrosion Resistance of PANI/TiO2/Epoxy Coatings
Shan ZHANG1,Lina ZHOU2,Lu JIAN1,Xu WANG1()
1. School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China
2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(2255 KB)   HTML
摘要: 

通过原位化学氧化合成法制备了含不同比例纳米TiO2的聚苯胺/TiO2复合粉.以环氧树脂为成膜物质,采用共混的方法制备了聚苯胺/TiO2/环氧涂层,并通过正交实验优选出了力学性能最佳的涂层配方,耐化学品性测试验证了优选配方同时具有最佳的耐蚀性.最后分别考察了优选配方涂层在含S2-及Cl-盐溶液中的耐蚀性.结果表明:合成的复合粉颗粒为纳米级,聚苯胺和TiO2存在强烈相互作用;正交实验各因素对涂层力学性能影响的重要程度次序为:聚苯胺>TiO2>固化温度>溶剂的量>溶剂间比例;当聚苯胺与环氧树脂质量比为1∶100,TiO2与环氧树脂质量比为1∶100,固化温度为60 ℃,溶剂的量与环氧树脂质量比为5∶10,NMP与正丁醇的溶剂摩尔比为2∶1时,所得涂层力学性能及耐蚀性能最佳;涂层在65 ℃,3.5% (质量分数) NaCl溶液中浸泡72 h后电化学阻抗出现极大值,在80 ℃,3% (质量分数) Na2S溶液中浸泡120 h仍然具有良好的耐蚀性.

关键词 聚苯胺/TiO2/环氧涂层制备耐蚀性    
Abstract

Polyaniline/TiO2 nano composites with different weight ratios of polyaniline to TiO2 were synthesized using chemical oxidative polymerization through polymerizing polyaniline (PANI) onto the nano TiO2 surface. The prepared PANI/TiO2 composites were characterized by FTIR, XRD and SEM. Then PANI/TiO2/epoxy resin coating was prepared by blending epoxy resin with polyaniline/TiO2 nano powders, while coating formulation with excellent mechanical performance was acquired through orthogonal experiments and trial corrosion tests. The corrosion performance of X70 steel coated with the optimal coating was examined in S2- and Cl- containing solutions at different temperatures. The results show that there exists strong interaction between the nano TiO2 particle and PANI within the PANI/TiO2 composites. Many factors could affect the mechanical property of the coatings, according to their impact degree, which may be ranked as the following sequence: PANI>TiO2>curing temperature>solvent content>solvent ratio. The optimal PANI/TiO2/epoxy resin coating with excellent mechanical properties and corrosion performance could be acquired by an optimal process with the following parameters: the mass ratio of PANI to epoxy resin is 1 to 100; TiO2 to epoxy resin is 1 to 100; curing at 60 ℃. The content of solvent to epoxy resin is 5 to 10 and NMP/n-butanol=2/1(solvent molar ratio). Furthermore, at 72 h after immersion of the optimal coating in 3.5%NaCl solution at 65 ℃, a maximum appeared on its impedance vs time curve, whilst the coating keeps an excellent corrosion resistance even after immersion in 3%Na2S solution for 120 h at 80 ℃.

Key wordsPANI/TiO2/epoxy coating    preparation    corrosion resistance
    

引用本文:

张山,周丽娜,简璐,王煦. 聚苯胺/TiO2/环氧涂层的制备及耐蚀性研究[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
Shan ZHANG, Lina ZHOU, Lu JIAN, Xu WANG. Preparation and Corrosion Resistance of PANI/TiO2/Epoxy Coatings. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 59-66.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.023      或      https://www.jcscp.org/CN/Y2016/V36/I1/59

Level PANI / g[A] TiO2 / g[B] NMP+N-butanol/ g [C] NMP/N-butanol(molar ratio) [D] Curing temperature / ℃ [E]
1 0.05 0 3 1:1 60
2 0.1 0.1 4 2:1 80
3 0.15 0.2 5 1:2 100
4 0.2 0.3 6 3:1 120
表1  正交实验的因素和水平
图1  PANI和PANI/TiO2的FTIR谱
图2  TiO2和PANI/TiO2的SEM像
Flexibilitycrack Score Pencil Hardness
H
Score Impact Resistance / cm Score Adhesion level Score
No 100 6H 100 50 100 1 100
Slight 66.7 5H 91.66 40 80 2 85.71
Obvious 33.3 4H 83.33 30 60 3 71.42
3H 75 20 40 4 57.14
2H 66.67 5~20 5 5 42.85
1H 58.33 <5 0 6 28.57
7 14.28
表2  多指标评分标准
Test A B C D E Score
1 A1 B1 C1 D1 E1 75.47
2 A1 B2 C2 D2 E2 93.33
3 A1 B3 C3 D3 E3 90.67
4 A1 B4 C4 D4 E4 72.14
5 A2 B1 C2 D3 E4 90
6 A2 B2 C1 D4 E3 95
7 A2 B3 C4 D1 E2 97.5
8 A2 B4 C3 D2 E1 100
9 A3 B1 C3 D4 E2 78.33
10 A3 B2 C4 D3 E1 100
11 A3 B3 C1 D2 E4 73.33
12 A3 B4 C2 D1 E3 87.97
13 A4 B1 C4 D2 E3 71.66
14 A4 B2 C3 D1 E4 73.33
15 A4 B3 C2 D4 E1 93.81
16 A4 B4 C1 D3 E2 75.47
k1 76.250 82.500 82.500 82.500 90.000 ---
k2 96.250 92.500 86.250 88.750 85.000 ---
k3 87.500 88.750 88.750 82.500 82.500 ---
k4 78.750 75.000 81.250 85.000 81.250 ---
R 20.000 17.500 7.500 6.250 8.750 ---
表3  L16(45)正交实验评分结果分析
图3  PANI/TiO2,PANI和TiO2的XRD谱
图4  不同配方涂覆后X70钢的Nyquist图和Bode图
图5  优选配方涂层在65 ℃,3.5%NaCl溶液中浸泡后的Nyquist图和Bode图
图6  优选配方涂层在3%Na2S溶液中浸泡120 h后的Nyquist图和Bode图
图7  优选配方涂层在含Cl-和S2-盐溶液中浸泡前后的SEM像
[1] Bin Y, Wang G C, Ye J K, et al.Corrosion inhibition of carbon steel by polyaniline nanofibers[J]. Mater. Lett., 2008, 62: 1775
[2] Elaine A, Alvaro M, Ferreira C A, et al.Polyaniline, polypyrrole and poly (3,4-ethylene-dioxythiophene) as additives of organic coatings to prevent corrosion[J]. Surf. Coat. Technol., 2009, 203: 3763
[3] Jadhav R S, Hundiwale D G, Mahulikar P P.Synthesis of nano polyaniline and poly-o-anisidine and applications in alkyd paint formulation to enhance the corrosion resistivity of mild steel[J]. J. Coat.Technol. Res., 2010, 7: 449
[4] Fang J J, Xu K, Zhu L H, et al.A study on mechanism of corrosion protection of polyaniline coating and its failure[J]. Corros. Sci., 2007, 49: 4232
[5] Pan T J, Wang T.Corrosion performance and preparation of polyaniline film on the surface of AZ91 magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34(6): 490
[5] (潘太军, 汪涛. AZ91镁合金表面合成聚苯胺涂层及其腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 490)
[6] Karim M R, Lee C J, Lee M S.Synthesis and characterization of conducting polythiophene/carbon nanotubes composites[J]. J. Pol- ym. Sci., Part A: Polym. Chem., 2006, 44(18): 5283
[7] Zhang Z P, Han M Y.One-step preparation of size-selected and well-dispersed silver-nanocrystals in polyacrylonitrile by simultaneous reduction and polymerization[J]. J. Mater. Chem., 2003, 13: 641
[8] Khanna P K, Kulkarni M V, Singh N, et al.Synthesis of HCl doped polyaniline-CdS nanocomposite by use of organometallic cadmium precursor[J]. Mater. Chem. Phys., 2006, 95(1): 24
[9] Pawar S G, Patil S L, Chougule M A, et al.Polyaniline: TiO2 nanocomposites: Synthesis and characterization[J]. Arch. Appl. Sci. Res., 2010, 2(2): 194
[10] Sathiyanarayanan S, Azim S S, Venkatachari G.A new corrosion protection coating with polyaniline-TiO2 composite for steel[J].Electrochim. Acta, 2007, 52(5): 2068
[11] Rathod R C, Didolkar V K, Umare S S, et al.Synthesis of processable polyaniline and its anticorrosion performance on 316LN stainless steel[J]. Trans. Indian Inst. Met., 2011, 64(4/5): 431
[12] Rathod R C, Didolkar V K, Umare S S, et al.Production and characterization of PANI/TiO2 nanocomposites: Anticorrosive application on 316LN SS[J]. Trans. Indian Inst. Met., 2013, 66(2): 97
[13] Mahulikar P P, Jadhav R S, Hundiwale D G.Performance of polyaniline/TiO2 nanocomposites in epoxy for corrosion resistant coatings[J]. Iran. Polym. J., 2011, 20(5): 367
[14] Bhadra J, Sarkar D.Field effect transistor fabricated from polyaniline-polyvinyl alcohol nanocomposite[J]. Indian J. Phys., 2009, 84(6): 693
[15] Reddy K R, Lee K P, Gopalan A I.Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nan-ocomposites: Effect of dopant on the properties[J]. Colloids Surf.,A, 2008, 320: 49
[16] Jadhav R S, Hundiwale D G, Mahulikar P P.Synthesis of nano polyaniline and poly-o-anisidine and applications in alkyd paint formulation to enhance the corrosion resistivity of mild steel[J]. J.Coat. Technol. Res., 2010, 7: 449
[17] Lee I S, Lee J H, Sung J H, et al.Synthesis and electrorheological characteristics of polyaniline titanium dioxide hybrid suspension[J]. Synth. Met., 2005, 152(1-3): 173
[18] Yang S, Ishikawa Y, Itoh H S, et al.Fabrication and characterization of core/shell structured TiO2/polyaniline nanocomposite[J]. J.Colloid Interface Sci., 2011, 356: 734
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[11] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[12] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[13] 杨钊, 时惠英, 蒋百灵, 葛延峰, 张静, 张曼玉, 李研. 脉冲电流对1050铝合金微弧氧化过程的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 283-288.
[14] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[15] 崔学军, 平静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 87-104.