Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (4): 345-352    DOI: 10.11902/1005.4537.2015.016
  本期目录 | 过刊浏览 |
土壤优势放线菌菌群对紫铜的腐蚀
李波1,2,罗学刚2(),唐永金1,2,李梓番1,2,杨圣1,2,焦扬1,2
2. 西南科技大学 生物质材料教育部工程研究中心 绵阳 621010
Corrosion Behavior of the Dominant Actinomycetes in Soil on Copper
Bo LI1,2,Xuegang LUO2(),Yongjin TANG1,2,Zifan LI1,2,Sheng YANG1,2,Yang JIAO1,2
1. College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
2. Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
全文: PDF(2962 KB)   HTML
摘要: 

采用微生物学、表面分析技术和电化学方法研究了从高放废物处置预选区土壤中分离的放线菌菌群对紫铜的腐蚀行为。结果表明:添加高浓度培养基可以维持菌群一定周期内的持续活性;SEM及EDS结果表明,浸泡9 d时放线菌菌群在紫铜表面形成完整的生物膜,腐蚀产物主要为Cu的氢氧化物;实验前期活性生物膜抑制紫铜腐蚀,后期菌群的活动改变了紫铜表面双电层的结构及性质,加速腐蚀进程。

关键词 紫铜放线菌菌群扫描电镜电化学    
Abstract

The corrosion behavior of copper in culture medium inoculated with dominant actinomycetes is studied by means of microbiological test, surface analysis and electrochemical measurement method. The dominant actinomycetes are separated from the soil of Beishan in Gansu province, where is one of the preselected areas for high-level radioactive waste repository. The results show that the sustain activity of actinomycetes in a certain period could be maintained by adding high concentration culture medium for 2, 9 and 30 d after corrosion. The biofilm caused by actinomycetes is completely formed on the surface of copper after corrosion for 9 d and the hydroxide products of copper serve as the main corrosion products. The active biofilm inhibits the corrosion process of copper in the early stage, however in the later stage, while the enhanced activity of actinomycetes changes the structure and character of the double electric layer on the copper surface, thereby increases the corrosion rate and promotes the formation of corrosion pits.

Key wordscopper    actinomycetes    scanning electron microscope    electrochemistry
    
基金资助:国家核设施退役及放射性废物治理科研项目 (12ZG6104)资助

引用本文:

李波,罗学刚,唐永金,李梓番,杨圣,焦扬. 土壤优势放线菌菌群对紫铜的腐蚀[J]. 中国腐蚀与防护学报, 2015, 35(4): 345-352.
Bo LI, Xuegang LUO, Yongjin TANG, Zifan LI, Sheng YANG, Yang JIAO. Corrosion Behavior of the Dominant Actinomycetes in Soil on Copper. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 345-352.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.016      或      https://www.jcscp.org/CN/Y2015/V35/I4/345

图1  放线菌菌群活菌数随时间的变化曲线
图2  紫铜在无菌与有菌培养基中浸泡9 d后的腐蚀形貌及EDS结果
图3  紫铜在无菌与有菌培养基中浸泡60 d后的腐蚀形貌及EDS结果
Time / d Ecorr / mV I / μAcm-2 βc / mV βa / mV
Sterile Inoculated Sterile Inoculated Sterile Inoculated Sterile Inoculated
0 -681 -681 10.55 10.55 4341 4341 6598 6598
2 -601 -653 14.58 9.668 2774 3434 6463 5712
9 -539 -630 20.20 10.78 3120 3769 6341 6603
30 -527 -503 12.05 9.148 3098 4058 8016 7213
60 -538 -489 18.81 20.87 3573 3009 7302 6721
表1  浸泡不同时间的紫铜的极化曲线参数
图4  浸泡不同时间无菌和有菌培养基中紫铜的极化曲线
图5  无菌和有菌培养基中紫铜腐蚀电流密度随时间的变化曲线
图6  无菌和有菌培养基中紫铜腐蚀速率随时间的变化曲线
图7  浸泡不同时间无菌和有菌培养基中紫铜的EIS谱
图8  用于阻抗谱拟合的等效电路模型
Time / d Rs / Ωcm2 Cf / μFcm2 Rf / Ωcm2 Cdl / μFcm2 Rct / Ωcm2
0 15.16 8.3678 1613 13.5860 5007
2 14.29 4.6875 1616 11.3240 16547
9 12.63 9.2238 2068 18.3830 10424
30 12.63 16.7440 5196 18.1130 17153
60 11.53 15.3070 745 12.2600 1703
表2  无菌培养基中EIS拟合结果
Time / d Rs / Ωcm2 Cf / μFcm2 Rf / Ωcm2 Cdl / μFcm2 Rct / Ωcm2
0 15.16 8.3678 1613 13.5860 5007
2 13.13 5.8896 1052 13.9060 5908
9 23.65 1.2694 1442 4.4215 15452
30 12.63 14.9920 2704 19.9330 9718
60 12.08 12.8070 632.7 8.7892 2211
表3  有菌培养基中EIS拟合结果
[1] Rechard R P, Voegele M D. Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste[J]. Reliab. Eng. Syst. Saf., 2014, 122: 53
[2] Wang Q H, Liu Y, Si G H, et al. Research of container materials for high level radioactive waste[J]. Corros. Prot., 2011, 32(1): 40 (王青海, 刘艳, 司高华等. 高放废物包装容器材料腐蚀研究进展[J]. 腐蚀与防护, 2011, 32(1): 40)
[3] Sowards J W, Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria[J]. Corros. Sci., 2014, 87: 460
[4] Li X, Chen H Y, Li H Y, et al. Influence on corrosion behavior of copper in marine iron-oxidizing bacteria[J]. Microbiol. China, 2013 40(5): 749
null ( 李霞, 陈海燕, 李欢园等. 海洋铁细菌对紫铜腐蚀行为的影响[J].微生物学通报, 2013, 40(5): 749)
[5] Domonell A, Brabender M, Nitsche F, et al. Community structure of cultivable protists in different grassland and forest soils of thuringia[J]. Pedobiologia, 2013, 56(1): 1
[6] Zhou J, Lei T. Review and prospects on methodology and affecting factors of soil microbial diversity[J]. Biodivers. Sci., 2007, 15(3): 306 (周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望[J]. 生物多样性, 2007, 15(3): 306)
[7] Gallagher K A, Fenical W, Jensen P R. Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes[J]. Curr. Opin. Biotechnol., 2010, 21(6): 794
[8] Li Y X, Zhang D, Zhang X Y, at al. Separation of soil actinomyces and 16S rDNA phylogenetic analysis[J]. J. Henan Agric. Sci., 2014, 43(3): 75 (李永欣, 张栋, 张晓瑜等. 土壤放线菌分离与16S rDNA系统发育分析[J]. 河南农业科学, 2014, 43(3): 75)
[9] Diler E, Rouvellou B, Rioual S, et al. Characterization of corrosion products of Zn and Zn-Mg-Al coated steel in a marine atmosphere[J]. Corros. Sci., 2014, 87: 111
[10] Nie Y Y, Duan J Z, Du M, et al. Influence of NaN3 on cathodic oxygen reduction induced by microbe-assisted catalysis on surface of 316LSS in sea water[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 359 (聂鸳鸳, 段继周, 杜敏等. 天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响[J]. 中国腐蚀与防护学报, 2014, 34: 359)
[11] Wang H Z, Chen J, Zhou J Q, et al. Corrosion characteristics of welded joints of copper pipe in seawater[J]. Trans. Nonferrous Met. Soc. China, 2006, 16(4): 645 (王宏智, 陈君, 周建奇等. 紫铜海水管焊接部位在海水中的腐蚀特征[J]. 中国有色金属学报, 2006, 16(4): 645)
[12] Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution:(I) electrochemical analysis[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346 (吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究:(I) 电化学分析[J]. 中国腐蚀与防护学报, 2014, 34: 346)
[13] Wu T Q,Yang P, Zhang M D, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution:(II) corrosion morphology and corrosion product analysis[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353 (吴堂清, 杨圃, 张明德等. 酸性土壤浸出液中X80钢微生物腐蚀研究:(II) 腐蚀形貌和产物分析[J]. 中国腐蚀与防护学报, 2014,34: 353)
[14] Wu T, Xu J, Yan M, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution[J]. Corros. Sci., 2014, 83: 38
[15] Qi D M, Cheng N Y, Du X Q, et al,. Review on atmospheric corrosion of copper and copper alloys[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 389 (齐东梅, 成若义, 杜小青等. Cu及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2014, 34: 389)
[16] Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing: Chemical Industry Press, 2008 (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008)
[17] Werner S E, Johnson C A, Laycock N J, et al. Pitting of Type 304 stainless steee in the presence of a biofilm containing sulphate reducing bacteria[J]. Corros. Sci., 1998, 40(2): 465
[18] Chen B, Zheng B J, Zhang F, et al. Corrosion behavior of HSn70-1 copper alloy in SRB containing medium in atatic magnetic field[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 339 (陈碧, 郑碧娟, 张帆等. 静磁场下硫酸盐还原菌对HSn70-1铜合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34: 339)
[19] Xu D, Li Y, Song F, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium bacillus licheniformis[J]. Corros. Sci., 2013, 77: 385
[20] Wang F P,Kang W L,Jing H M,et al. Principles, Methods and Application of Electrochemistry of Corrosion[M]. Beijing: Chemical Industry Press, 2008 (王凤平,康万利,敬和民等. 腐蚀电化学原理、方法及应用[M]. 北京: 化学工业出版社, 2008)
[1] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[2] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[3] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[4] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[5] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[6] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[7] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[8] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[9] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[10] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[11] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[12] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[13] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.