Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (6): 549-555    DOI: 10.11902/1005.4537.2014.233
  研究报告 本期目录 | 过刊浏览 |
外加交流电场对薄液膜中氧扩散的影响
陈启萌1,张俊喜1(),原徐杰1,2,戴念维1
1. 上海电力学院 上海市电力材料防护与新材料重点实验室 上海 200090
2. 上海中挪海事有限公司 上海 210417
Effect of Alternating Electric Field on Diffusion Coefficient of Oxygen in Thin Electrolyte Layer
Qimeng CHEN1,Junxi ZHANG1(),Xujie YUAN1,2,Nianwei DAI1
1. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
2. China Classification Society-Det Norske Veritas Technology Institute, Shanghai 210417, China
全文: PDF(792 KB)   HTML
摘要: 

采用计时电流法测定了交流电场作用下O2在薄液膜中的扩散系数。考察了计时电流法测定氧扩散系数这一方法在薄液膜体系和电场环境下应用的可行性,研究了薄液膜体系中液膜厚度以及外加电场对氧扩散系数的影响。结果表明,O的扩散系数随着薄液膜厚度的减小而增大,随着交流电场强度的增强而增大。交流电场对O扩散系数的影响可能是其加速了O通过气/液界面到达电极表面的过程。薄的液膜和强的电场会加快金属腐蚀的阴极过程中O的传输,从而加速金属腐蚀。

关键词 计时电流法大气腐蚀氧还原反应动力学参数薄液膜    
Abstract

Effect of an applied alternating electric field on the oxygen diffusion coefficient in thin electrolyte layers on an electrode of stainless steel was investigated by chronoamperometry. The results show that the oxygen diffusion coefficient increased with the decrease in TEL thickness, as well as the increase in AEF strength. The effect of AEF on the oxygen diffusion coefficient is found to be due to that the migration of oxygen form the gas/liquid interface to electrode surface was accelerated by the applied electric field. For a thinner electrolyte layer by a stronger applied electric field, the cathodic process of the electrode would be more intensive,which corresponds to higher corrosion rate of metal.

Key wordschronoamperometry    atmospheric corrosion    oxygen reduction    kinetic parameter    thin electrolyte layer
    
基金资助:国家自然科学基金项目 (51271110) 和上海市教委科研创新重点项目 (12ZZ170) 资助

引用本文:

陈启萌,张俊喜,原徐杰,戴念维. 外加交流电场对薄液膜中氧扩散的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 549-555.
Qimeng CHEN, Junxi ZHANG, Xujie YUAN, Nianwei DAI. Effect of Alternating Electric Field on Diffusion Coefficient of Oxygen in Thin Electrolyte Layer. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 549-555.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.233      或      https://www.jcscp.org/CN/Y2015/V35/I6/549

图1  外电场作用下薄液膜腐蚀实验装置图
图2  无外加电场作用下的Pt电极在不同厚度0.35%NaCl薄液膜下的阴极极化曲线
图3  无外加电场作用下的Pt电极在不同厚度0.35%NaCl薄液膜下的脉冲曲线和1/[iF(t )]2对时间曲线
图4  无外加电场作用下的Pt电极在不同厚度的0.35%NaCl薄液膜下的Δ{1/[iF(t )]2}/Δt对时间曲线
图5  不同交流电场强度下O的D/D0值随薄液膜厚度的变化
图6  不同厚度薄液膜下O的D/D0随交流电场强度的变化
图7  不同强度的交流电场下不同薄液膜厚度的Δ{1/[iF(t )]2}/Δt对时间曲线
图8  有/无电场条件下的双电层模型
[1] Nishikata A, Ichihara Y, Hayashi Y, et al.Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron[J]. J. Electrochem. Soc., 1997, 144: 1244
[2] Katayama H, Kuroda S.Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn-Al coatings exposed in a coastal area[J]. Corros. Sci., 2013, 76: 35
[3] Monnier J, Réguer S, Foy E, et al.XAS and XRD in situ characterisation of reduction and reoxidation processes of iron corrosion products involved in atmospheric corrosion[J]. Corros. Sci., 2014, 78: 293
[4] Muster T H, Bradbury A, Trinchi A, et al.The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape[J]. Electrochem. Acta, 2011, 56(4): 1866
[5] Ligier V, Wéry M, Hihn J Y, et al.Formation of the main atmospheric zinc end products: NaZn4Cl(OH)6SO46H2O, Zn4SO4(OH)6nH2O and Zn4Cl2(OH)4SO45H2O in [Cl-][SO42-][HCO3-][H2O2] electrolytes[J]. Corros. Sci., 1999, 41(6): 1139
[6] Barranco V, FeliuJr S, Feliu S. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3%NaCl solution. Part 1: Directly exposed coatings[J]. Corros. Sci., 2004, 46(9): 2203
[7] Prosek T, Thierry D, Taxén C, et al.Effect of cations on corrosion of zinc and carbon steel covered with chloride deposits under atmospheric conditions[J]. Corros. Sci., 2007, 49(6): 2676
[8] Lalvani S B, Zhang G.The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I[J]. Corros. Sci., 1995, 37(10): 1567
[9] Wendt J L, Chin D T.The a.c. corrosion of stainless steel—II. The breakdown of passivity of SS304 in neutral aqueous solutions[J]. Corros. Sci., 1985, 25(10): 889
[10] Zhang J X, Yuan J, Qiao Y N, et al.The corrosion and passivation of SS304 stainless steel under square wave electric field[J]. Mater. Chem. Phys., 2003, 79(1): 43
[11] Kim D K, Muralidharan S, Ha T H, et al.Electrochemical studies on the alternating current corrosion of mild steel under cathodic protection condition in marine environments[J]. Electrochem. Acta, 2006, 51(25): 5259
[12] Huang H L, Guo X P, Zhang G A, et al.Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels[J]. Corros. Sci., 2011, 53(10): 3446
[13] Huang H L, Pan Z Q, Guo X P, et al.Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer[J]. Corros. Sci., 2013, 75: 100
[14] Yuan X J, Zhang J X, Chen Q M, et al.Corrosion behavior of zinc covered with thin electrolyte layers under external electric field[J]. J. Electrochem., 2013, 19(5): 430
[14] (原徐杰, 张俊喜, 陈启萌等. 电场作用下金属锌在薄液膜下的腐蚀电化学研究[J]. 电化学, 2013, 19(5): 430)
[15] Yuan X J, Zhang J X, Chen Q M, et al.Corrosion science and protection technology, electrochemical process of Zn electrode covered with thinelectrolyte layer under external electric field[J]. Corros. Sci. Prot. Technol., 2014, 26(3): 197
[15] (原徐杰, 张俊喜, 陈启萌等. 电场作用下金属Zn在薄液膜下的电极过程研究[J]. 腐蚀科学与防护技术, 2014, 26(3): 197)
[16] Jiang L L, Wu L K, Hu J M, et al.Electrodeposition of protective organosilane films from a thin layer of precursor solution[J]. Corros. Sci., 2012, 60: 309
[17] Stroe van A J, Janssen L J J. Determination of the diffusion coefficient of oxygen in sodium chloride solutions with a transient pulse technique[J]. Anal. Chim. Acta, 1993, 279(2): 213
[18] Buffle J, Pelletier M, Monnier D.Chronopotentiometric study of the oxidation of some diluted amalgams in the presence of traces of oxygen dissolved in aqueous solution: Part II: Study of the influence of various parameters on the reaction rate[J]. J. Electroanal. Chem. Interfacial Electrochem., 1973, 43(2): 185
[19] Ju L K, Ho C S.The measurement of oxygen diffusion coefficients in polymeric solutions[J]. Chem. Eng. Sci., 1986, 41(3): 579
[20] Ho C S, Ju L K.Simultaneous measurement of oxygen diffusion coefficients and solubilities in electrolyte solutions with a polarographic oxygen electrode[J]. Chem. Eng. Sci., 1988, 43(11): 3093
[21] Verhallen P T H M, Oomen L J P, Elsen A J J, et al. The diffusion coefficients of helium, hydrogen, oxygen and nitrogen in water determined from the permeability of a stagnant liquid layer in the quasi-s[J]. Chem. Eng. Sci., 1984, 39(11): 1535
[22] Castellote M, Alonso C, Andrade C, et al.Oxygen and chloride diffusion in cement pastes as a validation of chloride diffusion coefficients obtained by steady-state migration tests[J]. Cem. Concr. Res., 2001, 31(4): 621
[23] Zhang L, Ma C S, Mukerjee S.Oxygen reduction and transport characteristics at a platinum and alternative proton conducting membrane interface[J]. J. Electroanal. Chem., 2004, 568: 273
[24] Beattie P D, Basura V I, Holdcroft S.Temperature and pressure dependence of O2 reduction at Pt | Nafion® 117 and Pt | BAM® 407 interfaces[J]. J. Electroanal. Chem., 1999, 468(2): 180
[25] Li Q, McAuley C B, Lawrence N S, et al. Anomalous solubility of oxygen in acetonitrile/water mixture containing tetra-n-butylammonium perchlorate supporting electrolyte: The solubility and diffusion coefficient of oxygen in anhydrous acetonitrile and aqueous mixtures[J]. J. Electroanal. Chem., 2013, 688: 328
[26] Jiang J H, Rajagopalan K.Oxygen reduction reaction on a mini gas diffusion electrode[J]. Electrochim. Acta, 2011, 58: 717
[27] Scharifker B R, Zelenay P, Bockris J O M. The kinetics of oxygen reduction in molten phosphoric acid at high temperatures[J]. J. Electrochem. Soc., 1987, 134: 2714
[28] Lee H K, Park J H, Kim D Y, et al.A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC[J]. J. Power Sources, 2004, 131(1/2): 200
[29] Tsai C R, Chen F L, Ruo A C, et al.An analytical solution for transport of oxygen in cathode gas diffusion layer of PEMFC[J]. J. Power Sources, 2006, 160(1): 50
[30] Liao X N, Cao F H, Zheng L Y, et al.Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corros. Sci.,2011, 53(10): 3289
[31] Liu W J, Cao F H, Chen A, et al.Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour[J]. Corros. Sci., 2010, 52(2): 627
[32] Zhong X K, Zhang G A, Qiu Y B, et al.The corrosion of tin under thin electrolyte layers containing chloride[J]. Corros. Sci., 2013, 66: 14
[33] Cheng Y L, Zhang Z, Cao F H, et al.A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers[J]. Corros. Sci., 2004, 46(7): 1649
[34] Frankel G S, Stratmann M, Rohwerder M, et al.Potential control under thin aqueous layers using a kelvin probe[J]. Corros. Sci., 2007, 49(4) : 2021
[35] Zhang S H, Lyon S B.The electrochemistry of iron, zinc and copper in thin layer electrolytes[J]. Corros. Sci., 1993, 35(1-4): 713
[36] Tani Y, Nohira T, Enomoto T, et al.Solubility and diffusion coefficient of oxygen in 1-ethyl-1-methylpyrrolidinium fluorohydrogenate room temperature ionic liquid at 298~373 K[J]. Electrochim. Acta, 2011, 56(11): 3852
[37] Haibara M, Hashizume S, Munakata H, et al.Solubility and diffusion coefficient of oxygen in protic ionic liquids with different fluoroalkyl chain lengths[J]. Electrochim. Acta, 2014, 132: 208
[38] Laitinen H A, Kolthoff I M.A Study of diffusion processes by electrolysis with microelectrodes[J]. J. Am. Chem. Soc., 1939, 61(12): 3344
[39] Yadav A P, Nishikata A, Tsuru T.Oxygen reduction mechanism on corroded zinc[J]. J. Electroanal. Chem., 2005, 585(1): 142
[40] Green E J, Carrit D E.New tables for oxygen saturation of seawater[J]. J. Mar. Res., 1967, 25: 140
[41] Himmelblau D M.Diffusion of dissolved gases in liquids[J]. Chem.Rev., 1964, 64: 527
[42] Ferrel R T, Himmelblau M.Diffusion coefficients of nitrogen and oxygen in water[J]. Chem. Eng. Data, 1967, 12(1): 111
[43] Nishikata A, Ichihara Y, Tsuru T.Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer[J]. Electrochim. Acta, 1996, 41(7/8): 1057
[44] Nishikata A, Ichihara Y, Tsuru T.An application of electrochemical impedance spectroscopy to atmospheric corrosion study[J]. Corros. Sci., 1996, 37(6): 897
[45] Tomashov N D.Passivity and corrosion resistance of metal systems[J]. Corrosion, 1964, 4(1-4): 315
[46] Rozenfeld I L.Atmospheric corrosion of metals [A]. National Association of Corrosion Engineers[C]. Houston, 1972
[47] Zhang X G, Valeriote E M.Galvanic protection of steel and galvanic corrosion of zinc under thin layer electrolytes[J]. Corros. Sci., 1993, 34(12): 1957
[48] Stuve E M. Ionization of water in interfacial electric fields: An electrochemical view [J]. Chem. Phys. Lett., 2012, 519/520: 1
[49] Bard A J, Faulkner L R.Electrochemical Methods Fundamentals and Applications[M]. 2nd Ed., NJ: John Wiley&Sons, 2003
[1] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[5] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[6] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[7] 林修洲, 杨丽, 梅拥军, 郑兴文, 罗淑文, 崔学军. 飞机起落架镀镉4130钢在甲酸钾溶液薄液膜下腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 567-574.
[8] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[9] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[10] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[11] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[12] 赵苇杭, 王浩伟, 蔡光义, 董泽华. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[13] 孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[14] 白子恒,黄运华,李晓刚,杨浪,董超芳,颜利丹,肖葵. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[15] 李东亮,付贵勤,朱苗勇. 湿热工业海洋大气中Si对桥梁钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.