Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (6): 525-534    DOI: 10.11902/1005.4537.2014.227
  研究报告 本期目录 | 过刊浏览 |
硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响
郝敬丽1,高永晶1,董泽华1,2()
1. 华中科技大学化学与化工学院 材料化学与服役失效湖北省重点实验室 武汉 430074
2. 湖北文理学院化工与食品学院 襄阳 433500
Effects of Siloxane Sulfide and Cerium Salt Complex Conversion Film on Corrosion Resistance of Aluminum Alloy
Jingli HAO1,Yongjing GAO1,Zehua DONG1,2()
1. Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Chemical and Food Sciences, Hubei Institute of Arts, Xiangyang 433500, China
全文: PDF(1344 KB)   HTML
摘要: 

通过在AA6063铝合金表面预沉积Ce3+,再浸涂双-[三- (乙氧基) 硅丙基]四硫化物 (BTST) 的分步沉积工艺,制备了一种高耐蚀性的CeO2/BTST复合转化膜。结果表明:单独CeO2膜仅可使铝合金在3%NaCl溶液中的极化电阻提高一个数量级;但复合膜则可使之提高两个数量级,且点蚀电位上升近400 mV。CeO2/BTST复合膜对铝合金亚稳态或稳态点蚀发展有强烈抑制作用,其噪声电阻达到10 MΩ·cm2以上,在浸泡168 h内基本无亚稳态点蚀发生,而单独的CeO2膜或BTST自组装膜的耐蚀性均有限,在3%NaCl溶液中浸泡168 h后铝合金表面即出现大量点蚀。由于CeO2能优先吸附于第二相 (AlFeSi) 组织表面,抑制亚稳态点蚀生长;而硅氧烷与Al—O键结合能高,能有效提高Al基体的全面保护能力,得益于二者的协同作用,采用顺序沉积铈盐/硅氧烷所制备的复合保护层,能同时显著提升铝合金的全面腐蚀与局部腐蚀抗力。

关键词 铝合金点蚀铈盐硅氧烷转化膜    
Abstract

A complex chemical conversion film of CeO2-siloxane was prepared on AA6063 aluminum alloy by successively dipping the alloy in CeCl3 aqueous solution and then in bis-[triethoxysilypropyl] tetra-sulfide (BTST) alcohol solution. Electrochemical tests show that the polarization resistance of the bare Al alloy in 3%NaCl solution can be enhanced by an order of magnitude with the CeO2 conversion film alone. But the complex film can rise both the polarization resistance by two orders of magnitude and the pitting potential by ca 400 mV. The enhancement of corrosion resistance of the alloy is limited by applying either CeO2 conversion film or BTST film alone, while a lot of pits can be observed on the Al electrode surface after immersed in 3%NaCl for 300 h. However, after the CeO2/BTST complex film was formed, no noise peaks can be found from the ECN curves when Al electrode immersed in 3%NaCl for 168 h, indicating that the complex film has a strong inhibition effect on the propagation of metastable- and steady-pits on the aluminium alloy. Since CeO2 can be absorbed preferentially on the second phase (AlFeSi), it can inhibit the growth of metastable pits; and the siloxane has a high binding energy with Al—O bond, therefore, the synergistic effect of CeO2 and siloxane may be beneficial to the excellent protectiveness of the complex film.

Key wordsaluminium alloy    pitting corrosion    cerium    siloxane    conversion film
    
基金资助:国家自然科学基金项目 (51371087) 资助

引用本文:

郝敬丽,高永晶,董泽华. 硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 525-534.
Jingli HAO, Yongjing GAO, Zehua DONG. Effects of Siloxane Sulfide and Cerium Salt Complex Conversion Film on Corrosion Resistance of Aluminum Alloy. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 525-534.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.227      或      https://www.jcscp.org/CN/Y2015/V35/I6/525

图1  AA6063铝合金在3%NaCl溶液中浸泡24 h前后的SEM像和浸泡前的EDX结果
图2  不同转化膜下铝合金电极在3%NaCl溶液中浸泡初期的极化曲线和EIS谱
图3  铈盐/硅氧烷顺序浸渍法制备的复合膜及单独的铈盐和硅氧烷膜层下铝合金在3%NaCl 溶液中浸泡不同时间时的电化学噪声(ECN)
图4  不同转化膜下铝合金电极在3%NaCl溶液中的噪声电阻及形核速率随时间的变化曲线
图5  不同转化膜下的铝合金在3%NaCl溶液中浸泡168 h后的腐蚀形貌
图6  不同复合转化膜工艺对铝合金在3%NaCl溶液中的极化曲线和阻抗谱的影响
图7  不同复合转化膜下的铝合金在3%NaCl溶液中浸泡312 h后的腐蚀形貌
图8  铈盐/硅氧烷复合转化膜示意图
[1] Zhou H R, Li X G, Dong C F.Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film[J].Equip. Environ. Eng., 2006, 3(1): 1
[1] (周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展[J]. 装备环境工程, 2006, 3(1): 1)
[2] Davó B, Damborenea J J D. Use of rare earth salts as electrochemical corrosion inhibitors for an Al-Li-Cu (8090) alloy in 3.56%NaCl[J]. Electrochim. Acta, 2004, 49(27): 4957
[3] Mishra A K, Balasubramaniam R.Corrosion inhibition of aluminium by rare earth chlorides[J]. Mater. Chem. Phys., 2007, 103(2):385
[4] Mishra A K, Balasubramaniam R.Corrosion inhibition of aluminium alloy AA 2014 by rare earth chlorides[J]. Corros. Sci., 2007, 49(3): 1027
[5] Conde A, Arenas M A, Frutos A, et al.Effective corrosion protection of 8090 alloy by cerium conversion coatings[J]. Electrochim. Acta, 2008, 53(26): 7760
[6] Ruan H M, Dong Z H, Shi W, et al.Effect of inhibitors on pitting corrosion of AA6063 aluminium alloy based on electrochemical no-ise[J]. Acta Phys.-Chim. Sin., 2012, 28(1): 2097
[6] (阮红梅, 董泽华, 石维等. 基于电化学噪声研究缓蚀剂对AA6063铝合金点蚀的影响[J]. 物理化学学报, 2012, 28(1): 2097)
[7] Hinton B J.Corrosion inhibition with rare earth metal salts journal of alloys and compounds[J]. J. Alloys Compd.,1992, 180(1): 15
[8] Yu X W, Cao C N, Lin H C, et al.Review of rare earth conversion coating of aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2000, 20(5): 298
[8] (于兴文, 曹楚南, 林海潮等. 铝合金表面稀土转化膜研究进展[J].中国腐蚀与防护学报, 2000, 20(5): 298)
[9] Davenport A J, Isaacs H S, Kendig M W.Investigation of the role of cerium compounds as corrosion inhibitors for aluminium[J]. Corros. Sci., 1991, 32(5): 653
[10] Hinton B, Arnott D, Ryan N.Cerium conversion coatings for the corrosion protection of aluminium[J]. Mater. Forum, 1986, 9(1): 162
[11] Xiao W, Man R L, Miao C, et al.Study on corrosion resistance of the BTESPT silane cooperating with rare earth cerium on the surface of aluminium-tube[J]. J. Rare Earths, 2010, 28(1): 117
[12] Xiao W, Man R L, Peng T L, et al.Preparation and properties of silane-rare earth composite coating on surface of aluminum tube[J]. Chin. J. Rare. Met., 2010, 2(34): 191
[12] (肖围, 满瑞林, 彭天兰等. 铝管表面硅烷稀土复合膜的制备及性能研究[J]. 稀有金属, 2010, 2(34): 191)
[13] Guo Z C, Wang Y F, Wang R M.Study of anticorrosion of Bis-[triethoxysilylpropyl]tetrasulfide silane films on surface of aluminum alloy[J]. J. Mater. Prot., 2006, 38(12): 47
[13] (郭增昌, 王云芳, 王汝敏. 铝合金表面双-[3-(三乙氧基)硅丙基] 硫化物转化膜的耐蚀性研究[J]. 材料保护, 2006, 38(12): 47)
[14] Abel M L, Digby R P, Fletcher I, et al.Evidence of specific interaction between γ-glycidoxypropyltrimethoxysilane and oxidized aluminium using high-mass resolution ToF-SIMS[J]. Surf. Interface Anal., 2000, 29(2): 115
[15] Kim J, Wong P C, Wong K C, et al.Adsorption of BTSE and γ-GPS organosilanes on different microstructural regions of 7075-T6 aluminium alloy[J]. Appl. Surf. Sci., 2007, 253(6): 3133
[16] Susac D, Sun X, Mitchell K A R. Adsorption of BTSE and γ-APS organosilanes on different microstructural regions of 2024-T3 aluminium alloy[J]. Appl. Surf. Sci., 2003, 207(1): 40
[17] Pantoja M, Díaz-Benito B, Velasco F, et al.Analysis of hydrolysis process of γ-methacryloxypropyl-trimethoxysilane and its influence on the formation of silane coatings on 6063 aluminium alloy[J]. Appl. Surf. Sci., 2009, 255(12): 6386
[18] van Ooij W J, Zhu D, Stacy M, et al. Corrosion protection properties of organofunctional silanes-an overview[J]. Tsinghua Sci. Tec-hnol., 2005, 10(6): 639
[19] Raps D, Hack T, Wehr J, et al.Electrochemical study of inhibitor-containing organic-inorganic hybrid coatings on AA2024[J]. Corros. Sci., 2009, 51(5): 1012
[20] Zhu D, van Ooij W J. Corrosion protection of AA2024-T3 by bis-[3-(triethoxysilyl)propyl] tetrasulfide in sodium chloride solution: Part 2: Mechanism for corrosion protection[J]. Corros. Sci., 2003, 45(10): 2177
[21] Zhu D, van Ooij W J. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl] amine and vinyltriacetoxysilane[J]. Prog. Org. Coat., 2004, 49(1): 42
[22] Correa P S, Malfatti C F, Azambuja D S.Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxysilane dopedwith cerium ions[J]. Prog. Org. Coat., 2011, 72(4): 739
[23] Zhang J T, Yang C Y, Pan L, et al.Electrochemical study of corrosion resistance of cerium nitrate doped silane-based hybrid films on aluminum alloy 2Al2[J]. Acta Metall. Sin., 2008, 44(11): 1372
[23] (张金涛, 杨春勇, 潘亮等. 2A12铝合金表面铈盐掺杂硅烷杂化膜在3,5%NaCl溶液中耐蚀性能的电化学研究[J]. 金属学报, 2008, 44(11): 1372)
[24] Naderi R, Fedel M, Deflorian F, et al.Synergistic effect of clay nanoparticles and cerium component on the corrosion behavior of eco-friendly silane sol-gel layer applied on pure aluminium[J].Surf. Coat. Technol., 2013, 224: 93
[25] Palomino L M, Suegama P H, Aoki I V, et al.Electrochemical study of modified cerium-silane bi-layer on Al alloy 2024-T3[J]. Corros. Sci., 2009, 51(6): 1238
[26] Osborne J H, Blohowiak K Y, Taylor S, et al.Testing and evaluation of nonchromated coating systems for aerospace applications[J]. Prog. Org. Coat., 2001, 41(4): 217
[27] Wu L K, Liu L, Li J, et al.Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl] tetra-sulphide films on AA2024-T3 (aluminium alloy) for corrosion protection[J]. Surf. Coat. Technol., 2010, 204(23): 3920
[28] Malfatti C F, Menezes T, Radtke C, et al.The influence of cerium ion concentrations on the characteristics of hybrid films obtained on AA2024-T3 aluminium alloy[J]. Mater. Corros., 2012, 63(9): 819
[29] Xiao W, Man R L.A study of preparation and properties of BTESPT silane-rare earth composite coating on aluminum-tube surface[J]. Electroplat. Pollut. Control, 2009, 29(5): 30
[29] (肖围, 满瑞林. 铝管表面BTESPT硅烷稀土复合膜的制备及耐蚀性的研究[J]. 电镀与环保, 2009, 29(5): 30)
[30] Shi H W, Liu F C, Han E-H.Corrosion behavior of sol-gel coatings doped with cerium salts on 2024-T3 aluminum alloy[J]. Mater. Chem. Phys., 2010, 124(1): 291
[31] Zhu D, van Ooij W J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl) propyl] tetrasulfide in neutral sodium chloride solution. Part 1: corrosion of AA 2024-T3[J]. Corros. Sci., 2003, 45(10): 2163
[32] Montemor M, Trabelsi W, Zheludevich M, et al.Modification of bis-silane solutions with rare-earth cations for improved corrosion protection of galvanized steel substrates[J]. Prog. Org. Coat., 2006,57(1): 67
[33] Montemor M, Pinto R, Ferreira M.Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles[J]. Electrochim. Acta, 2009, 54(22): 5179
[34] Trabelsi W, Triki E, Dhouibi L, et al.The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanised steel substrates[J]. Surf. Coat. Technol., 2006, 200(14): 4240
[35] Montemor M, Ferreira M.Electrochemical study of modified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy[J]. Electrochim. Acta, 2007, 52(27): 7486
[36] Palanivel V, Huang Y, van Ooij W J. Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 in a 0.5 M NaCl solution[J]. Prog. Org. Coat., 2005, 53(2): 153
[37] Cambon J B, Ansart F, Bonino J P, et al.Effect of cerium concentration on corrosion resistance and polymerization of hybrid sol-gel coating on martensitic stainless steel[J]. Prog. Org. Coat., 2012, 75(4): 486
[38] Garcia-Heras M, Jimenez-Morales A, Casal B, et al.Preparation and electrochemical study of cerium-silica sol-gel thin films[J]. J. Alloys Compd., 2004, 380(1): 219
[39] Li G Q, Li D.Rare-earth conversion coatings for aluminum alloys[J]. Mater. Eng., 1998, (7): 3
[39] (李国强, 李荻. 铝合金稀土转化膜的研究进展[J]. 材料工程,1998, (7): 3)
[1] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[2] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[3] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[4] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[5] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[6] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[8] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[9] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[10] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[11] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[12] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[13] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[14] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[15] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.