Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 423-428    DOI: 10.11902/1005.4537.2014.219
  本期目录 | 过刊浏览 |
7050铝合金板材晶粒结构与抗剥落腐蚀性能的关系
赵凤1,2(),鲁法云1,2,穆楠1,2,郭富安1,2,张莉1
2. 北京南山航空材料研究院 北京 100048
Relations between Microstructure and Exfoliation Corrosion Resistance of 7050 Al-alloy
Feng ZHAO1,2(),Fayun LU1,2,Nan MU1,2,Fuan GUO1,2,Li ZHANG1
1. National Engineering Research Center for Plastic Working of Aluminium Alloys, Shandong Nanshan Aluminium Co., Ltd., Yantai 265713, China
2. Beijing Nanshan Institute of Aeronautical Materials, Beijing 100048, China
全文: PDF(5743 KB)   HTML
  
摘要: 

利用金相显微镜、扫描电镜及图像分析软件,分析7050-T7451合金的微观组织特征、剥蚀过程中的扩展路径和腐蚀深度,研究了样品的晶界析出相的分布、再结晶比例和晶粒长宽比对抗剥落腐蚀性能的影响程度。结果表明:对不同加工工艺的7050-T7451合金板材,晶界析出相均呈断续分布,晶粒组织主要由再结晶晶粒和未再结晶晶粒组成,但是平均晶粒长宽比、再结晶比例以及晶界析出相断续程度存在差异;在晶界析出相断续分布时,平均晶粒长宽比对该板材的剥蚀行为和剥蚀深度起到主导作用,晶界析出相的断续程度以及再结晶比例对剥落腐蚀程度影响较小;当平均晶粒长宽比小于5,晶界析出相断续分布时,抗剥落腐蚀性能级别可以达到EA级及以上。

关键词 7050-T7451铝合金剥落腐蚀晶粒长宽比晶界析出相    
Abstract

The microstructure characteristics, exfoliation corrosion behavior of 7050-T7451Al- alloy plates were examined by optical microscopy, scanning electron microscopy and Image Pro Plus. The effect of the distribution of grain boundary precipitates, the fraction of recrystallized grains and the length-width ratio of grains on the exfoliation corrosion behavior was investigated. The results indicate that the microstructures of the 7050-T7451 plates fabricated by different processes are composed of recrystallized grains and non-recrystallized grains with precipitates distributed discontinuously along grain boundaries; but which varied corresponding to the relevant fabrication processes. The average length-width ratio of grains plays an important role in the exfoliation corrosion process of the plate, while the influence of the discontinuity of precipitates distribution and the fraction of recrystallized grains is weak. When the precipitates distribute discontinuously along grain boundaries and the average length-width ratio of grains is less than 5, the EXCO resistance of 7050-T7451 plate can reach EA degree or better.

Key words7050-T7451 aluminum alloy    exfoliation corrosion    grain aspect ratio    grain boundary precipitate
    
ZTFLH:     

引用本文:

赵凤, 鲁法云, 穆楠, 郭富安, 张莉. 7050铝合金板材晶粒结构与抗剥落腐蚀性能的关系[J]. 中国腐蚀与防护学报, 2015, 35(5): 423-428.
Feng ZHAO, Fayun LU, Nan MU, Fuan GUO, Li ZHANG. Relations between Microstructure and Exfoliation Corrosion Resistance of 7050 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 423-428.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.219      或      https://www.jcscp.org/CN/Y2015/V35/I5/423

图1  实验样品的晶界析出相形貌
图2  金相显微镜明场下样品的晶粒形貌
图3  阳极覆膜后晶粒形貌和晶粒长宽比的统计图
图4  剥落腐蚀实验48 h后的样品形貌及剥落物
图5  剥落腐蚀实验后样品纵截面晶粒形貌观察
图6  剥落腐蚀实验后样品纵截面腐蚀深度观察
图7  2014合金表层、1/4层、芯部的平均晶粒尺寸及其对剥落腐蚀深度的影响[11]
[1] Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications[J]. Mater. Sci. Eng., 2000, A280(1): 102
[2] Cottis B, Graham M, Lindsay R, et al. Shreir's Corrosion [M]. Amsterdam: Elsevier, 1974
[3] Chubb J. The effect of exfoliation corrosion on the fracture and fatigue behaviour of 7178-T6 aluminium[J]. Int. J. Fatigue, 1995, 17(1): 49
[4] Robinson M J, Jackson N C. The influence of grain structure and intergranular corrosion rate on exfoliation and stress corrosion cracking of high strength Al-Cu-Mg alloys[J]. Corros. Sci., 1999, 41(5): 1013
[5] Robinson M J. Mathematical modelling of exfoliation corrosion in high strength aluminium alloys[J]. Corros. Sci., 1982, 22(8): 775
[6] Xu X J, Wu G C, Wang B, et al. Sr addition on intergranular and exfoliation corrosion properties of 7085 aluminum alloy[J]. Trans. Mater. Heat Treat., 2011, 32(5): 22 (许晓静, 吴桂潮, 王彬等. 含Sr7085型铝合金的晶间腐蚀和剥落腐蚀性能[J]. 材料热处理学报, 2011, 32(5): 22)
[7] Fang H C, Chen K H, Chen X, et al. Effect of Cr, Yb and Zr additions on localized corrosion of Al-Zn-Mg-Cu alloy[J]. Corros. Sci., 2009, 51(12): 2872
[8] GB/T 22639-2008. Test method of exfoliation corrosion for wrought aluminium and aluminium alloys[S] (GB/T 22639-2008. 铝合金加工产品的剥落腐蚀实验方法 22639-2008. 铝合金加工产品的剥落腐蚀实验方法[S])
[9] Yan D J, Zhang Y D. Effect of ageing condition on SCC resistance and exfoliation corrosion behavior of 7475 and 7050 Al alloys[J]. J. Mater. Eng., 1993, (2): 13 (阎大京, 张宇东. 时效制度对7475和7050铝合金应力腐蚀及剥层腐蚀性能的影响[J]. 材料工程, 1993, (2): 13)
[10] Zhang H F, Chen Q. Influence of aging treatment on intergranular corrosion and exfoliation corrosion susceptibility of super-high strength Al alloy containing Sc[J]. Corros. Prot., 2012, 33(2): 127 (张海锋, 陈琴. 时效制度对含钪超高强铝合金晶间腐蚀和剥落腐蚀的影响[J]. 腐蚀与防护, 2012, 33(2): 127)
[11] Robinson M J, Jackson N C. Exfoliation corrosion of high strength Al-Cu-Mg alloys: Effect of grain structure[J]. Br. Corros. J., 1999, 34(1): 45
[12] Zhao F, Cao L Y, Lang Y J, et al. The influence of inhomogeneous deformation on the microstructures and properties of thick-plate 7150 alloy[J]. Mater. Sci. Forum, 2013, 749: 250
[13] Su J X, Zhang Z, Cao F H, et al. Review on the intergranular corrosion and exfoliation corrosion of aluminum alloys[J]. J. Chin. Soc.Corros. Prot., 2005, 25(3): 187 (苏景新, 张昭, 曹发和等. 铝合金的晶间腐蚀与剥蚀[J]. 中国腐蚀与防护学报, 2005, 25(3): 187)
[1] 曹敏, 刘莉, 余钟芬, 李瑛, 王福会. 2A02铝合金在模拟海洋大气环境中的剥蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[2] 暨波,张新明,张卓夫,叶凌英,李文健. Yb对2519A铝合金抗剥落腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 279-286.
[3] 黄昌龙,徐海蓉. 不同时效态对7150铝合金剥蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(6): 487-490.
[4] 王月; 王政红; 付自来; 张海峰 . 含钪Al-Mg合金的抗应力腐蚀和剥落腐蚀性能研究[J]. 中国腐蚀与防护学报, 2005, 25(4): 218-221 .