Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (6): 535-542    DOI: 10.11902/1005.4537.2014.216
  研究报告 本期目录 | 过刊浏览 |
钙质层对Q235碳钢在含双眉藻f/2培养基中腐蚀行为的影响
汪江伟1,2,张杰2(),陈守刚1,段继周2,侯保荣2
1. 中国海洋大学 材料科学与工程研究院 青岛 266100
2. 中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in f/2 Culture Medium with Amphora
Jiangwei WANG1,2,Jie ZHANG2(),Shougang CHEN1,Jizhou DUAN2,Baorong HOU2
1. College of Material Science and Engineering, Ocean University of China, Qingdao 266100, China
2. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, China
全文: PDF(998 KB)   HTML
摘要: 

对天然海水中Q235碳钢施加阴极保护沉积钙质层,并用XRD,SEM,FTIR和电化学手段对产物进行表征,同时研究有、无钙质层碳钢在含双眉藻的f/2培养液中的腐蚀行为。结果表明,电流密度为-30 µA/cm2时,沉积层结晶度高、表面平整。双眉藻及其代谢产物 (EPS) 在碳钢表面附着形成生物膜阻碍外界传质过程,但对O2的扩散阻碍效果不明显。钙质层可以促进生物膜附着,形成的复合结构膜对碳钢腐蚀有显著的抑制作用,且能够阻碍溶液中的O2向金属基体扩散。复合膜层下碳钢腐蚀经历以下过程:首先,溶液渗透到达金属表面引发腐蚀;随后腐蚀产物在沉积层下部积累使腐蚀速率减小;在最后阶段复合膜层脱落,腐蚀加快。

关键词 Q235碳钢钙质层双眉藻氧浓度腐蚀行为    
Abstract

Calcareous deposit was formed on Q235 carbon steel surface in nature seawater by applying cathodic protection, afterwards, the corrosion test of the steel covered with and without calcareous deposit was carried out in f/2 culture medium containing Amphora. Then the morphology and chemical composition of corrosion products were characterized by means of XRD, SEM, FTIR and EIS. The result revealed that the calcareous deposit prepared by a current density of -30 µA/cm2 showed an even- and uniform-surface morphology composed of nice crystalline phase. The Amphora and its metabolite could adhere to the steel surface forming a biofilm, which could suppress the mass transfer of corrosive species from the medium to the steel surface to some extent, but not obviously that of the oxygen. Calcareous deposit was apt to combine with Amphora forming a composite film on the steel surface, which then could rather effectively suppress the migration of oxygen. The corrosion process of Q235 steel beneath the composite film can be described as the following three stages: as the corrosive media penetrated the composite film on to the steel surface, the steel is corroded leading to the formation of corrosion products, while, with which the combination of the existed biofilm, thus the composite film could act as barrier enabling the corrosion rate to be decreased to some extent; later as damages occurred within the composite film, thereby its protectiveness deteriorated, the corrosion rate of the steel increased again.

Key wordsQ235 carbon steel    calcareous deposit    amphora    dissolved oxygen    behavior of corrosion
    
基金资助:国家自然科学基金项目 (41376003 和41006054) 资助

引用本文:

汪江伟,张杰,陈守刚,段继周,侯保荣. 钙质层对Q235碳钢在含双眉藻f/2培养基中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 535-542.
Jiangwei WANG, Jie ZHANG, Shougang CHEN, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in f/2 Culture Medium with Amphora. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 535-542.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.216      或      https://www.jcscp.org/CN/Y2015/V35/I6/535

图1  天然海水中不同极化电流密度下沉积72 h后钙质层的XRD谱
图2  天然海水中不同极化电流密度下沉积72 h后获得的沉积层形貌和EDX结果
Immerse time Rsol CPEf Rf CPEdl Rct
d Ω·cm2 Yf / Ω-1cm-2sn10-6 nf Ω·cm2 Ydl / Ω-1cm-2sn10-6 ndl Ω·cm2
1 11.7 160 0.86 198 470 0.8 5598
3 12.7 270 0.82 921 580 0.8 2295
5 11.4 340 0.67 1005 610 0.6 1654
9 12.5 460 0.53 1249 480 0.68 1890
12 12 500 0.57 1428 500 0.74 2140
15 9.9 2500 0.81 23 8700 0.8 1257
表1  表面沉积钙质层的Q235碳钢在含双眉藻培养基中浸泡不同时间后的电化学拟合参数
Immerse time Rsol CPEf Rf CPEdl Rct
d Ω·cm2 Yf / Ω-1cm-2sn10-6 nf Ω·cm2 Ydl / Ω-1cm-2sn10-6 ndl Ω·cm2
1 9.4 210 0.8 22 2100 0.53 3114
3 6.5 580 0.94 29 2400 0.63 2270
5 7.6 1000 0.89 36 3300 0.67 1585
9 6.4 1300 0.89 27 4000 0.69 1298
12 6.9 1600 0.89 23 4700 0.72 1013
15 6.3 2300 0.85 39 5100 0.79 988
表2  Q235碳钢在含双眉藻培养基中浸泡不同时间后的电化学拟合参数
Immerse time Rsol CPEf Rf CPEdl Rct
d Ω·cm2 Yf / Ω-1cm-2sn10-6 nf Ω·cm2 Ydl / Ω-1cm-2sn10-6 ndl Ω·cm2
1 19 150 0.98 211 3600 0.8 3023
3 19 64 0.96 212 3000 0.8 2243
5 18.8 61. 0.96 185 2800 0.64 2221
9 20 68 0.97 128 3000 0.72 2633
12 14 200 0.99 177 4300 0.9 2128
15 15.7 4000 0.98 201 4200 0.8 2116
表3  表面沉积钙质层的Q235碳钢在含双眉藻培养基滤液体系中浸泡不同时间后的电化学拟合参数
图3  Q235碳钢在不同环境下浸泡后的Nyquist和Bode图
图4  阻抗数据拟合等效电路模型
Immerse time Rsol CPEdl Rct
d Ω·cm2 Ydl / Ω-1cm-2·sn10-6 ndl Ω·cm2
1 6.4 620 0.8 1882
3 8.5 650 0.95 1904
5 5.5 690 0.94 1832
9 8.6 810 0.92 1662
12 7.8 1000 0.93 1364
15 7.7 1000 0.89 1555
表4  Q235碳钢在灭菌海水中浸泡不同时间后的电化学拟合参数
图5  含双眉藻f/2培养基体系在12 h光照和12 h黑暗交替环境下,有/无沉积钙质层碳钢的开路电位和氧含量随培养时间的变化趋势
图6  在双眉藻培养基中浸泡3 d后表面产物的FTIR谱
图7  有、无沉积层试样在含双眉藻培养基中浸泡9 d后表面膜层的SEM像
[1] Hou B R.Theory and Application of Marine Corrosion Environment[M]. Beijing: Science Press, 1999
[1] (侯保荣. 海洋腐蚀环境理论及其应用 [M]. 北京: 科学出版社, 1999)
[2] Ch Barchiche, Deslouis C, Festy D, et al.Characterization of calcareous deposits in artificial seawater by impedance techniques 3-Deposit of CaCO3 in the presence of Mg (II)[J]. Electrochim. Acta, 2003, 48: 1645
[3] Rakitin A R, Kichigin V I.Electrochemical study of calcium carbonate deposition on iron: Effect of the anion[J]. Electrochim. Acta,2009, 54: 2647
[4] Rousseau C, Baraud F, Leleyter L, et al.Calcareous deposit formed under cathodic protection in the presenceof natural marine sediments: A 12 month experiment[J]. Corros. Sci., 2010, 52: 2206
[5] Gabrielli C, Keddam M, Khalil A, et al.Study of calcium carbonate scales byelectrochemical impedance spectroscopy[J]. Electrochim. Acta, 1997, 42: 1207
[6] Sosa E, Garcia-Arriaga V, Castaneda H.Impedance distri bution at the interface of the API steel X65 in marine environment[J]. Electrochim. Acta, 2006, 51: 1855
[7] Liu S X, Wang Y, Zhang D, et al.Electrochemical behavior of 316L stainless steel in f/2 culture solutions containing chlorella vulgaris[J]. Int. J. Electrochem. Sci., 2013, 8: 5330
[8] Eashwar M, Sathish K P, Ravishankar R, et al.Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater[J]. Biofouling, 2013, 29(2): 185
[9] Blackwood D J, Lim C S, Teo S L M. Influence of fouling on the efficiency of sacrificial anodes in providing cathodic protection in southeast asian tropical seawater[J]. Biofouling, 2010, 26(7): 779
[10] Landoulsi J, Cooksey K E, Dupres V.Review-Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion[J]. Biofouling, 2011, 27(10): 1105
[11] Dattesh V D.Impact of Irgarol 1051 on the larval development and metamorphosis of Balanusamphitrite darwin, the diatom Amphora coffeaformis and natural biofilm[J]. Biofouling, 2008, 24(5): 393
[12] Ates M.Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces[J]. Prog. Org. Coat., 2011, 71: 1
[13] Galicia P, Batina N, González I.The relationship between the surface composition and electrical properties of corrosion films formed on carbon steel in alkaline sour medium: An XPS and EIS study[J]. J. Phys. Chem., 2006, 110B: 14398
[14] Okhrimenko D V, Nissenbaum J, Andersson M P, et al.Energies of the adsorption of functional groups to calcium carbonate polymorphs: The importance of -OH and -COOH groups[J]. Langmuir, 2013, 29: 11062
[15] Le Thu Q, Takenouti H, Touzain S.EIS characterization of thick flawed organic coatings aged under cathodic protection in seawater[J]. Electrochim. Acta, 2006, 51: 2491
[16] Qian B, Hou B R, Zheng M.The inhibition effect of tannic acid on mild steel corrosion in seawater wet/dry cyclic conditions[J]. Corros. Sci.,2013, 72: 1
[17] Nasrazadani S, Diaza J, Stevens J, et al.Effects of DBU, morpholine, and DMA oncorrosion of low carbon steel exposed to steam[J]. Corros. Sci., 2007, 49: 3024
[18] Cao S, Wang J D, Chen H S, et al.Progress of marine biofouling and antifouling technologies[J]. Chin. Sci. Bull., 2011, 56: 598
[19] Geesey G G, Wigglesworth-Cooksey B, Cooksey K Z.Influence of calcium and other cations on surface adhesion of bacteria and diatoms: A review[J]. Biofouling, 2000, 15(1-3), 195
[1] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[8] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[10] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[11] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[12] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[15] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.