Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 407-414    DOI: 10.11902/1005.4537.2014.200
  本期目录 | 过刊浏览 |
模拟海水淡化一级反渗透产水中咪唑啉缓蚀剂对20#碳钢的缓蚀行为
王玉娜1,聂凯斌1,杨冬1,姚隽旸2,董万田3,廖强强1()
2. 上海风华中学 上海 200072
3. 上海发凯化工有限公司 上海 201505
Corrosion Inhibition of 2-Undecyl-N-Carboxymethyl-N- Hydroxyethyl Imidazoline on Carbon Steel in Simulated Seawater Reverse Osmosis Product Water
Yuna WANG1,Kaibin NIE1,Dong YANG1,Juanyang YAO2,Wantian DONG3,Qiangqiang LIAO1()
1. Key Lab of Shanghai Colleges and Universities for Corrosion Control in Electric Power and Applied Electrochemistry, Shanghai University of Electric Power, Shanghai 200090, China
2. Shanghai Fenghua Middle School, Shanghai 200072, China
3. Shanghai Fakai Chemical Industry Co. Ltd., Shanghai 201505, China
全文: PDF(2017 KB)   HTML
  
摘要: 

采用失重法、电化学方法、XPS和SEM分析了2-十一烷基-N-羧甲基-N-羟乙基咪唑啉 (UHCI) 对20#碳钢在模拟海水淡化一级反渗透产水中的缓蚀行为。结果表明:UHCI对20#碳钢具有缓蚀作用,并且随着UHCI浓度的增加,缓蚀效率明显增大;UHCI减小了碳钢电极的阳极电流密度,是一种阳极型缓蚀剂。XPS测试表明,UHCI吸附在金属表面形成保护膜,有效阻碍腐蚀介质向金属表面扩散,从而达到缓蚀效果。量子化学计算结果表明,UHCI分子在与金属作用时,主要是羧甲基和咪唑环吸附在金属表面,从而降低腐蚀速率。

关键词 20#碳钢咪唑啉缓蚀海水淡化一级反渗透产水    
Abstract

Corrosion inhibition of 2-undecyl-N-carboxymethyl-N-hydroxyethyl imidazoline (UHCI) on carbon steel in an artificial water, which simulated the water produced by seawater reverse osmosis (RO) process, was investigated by mass loss test, electrochemical methods, and X-ray photoelectron spectroscopy (XPS). Results show that UHCI could inhibit the corrosion of carbon steel, and the inhibition efficiency increases with the increasing concentration of UHCI. The UHCI acts as an anodic type inhibitor responsible for reducing the anodic current density. XPS results suggest that UHCI was adsorbed on the mild steel surface, which can effectively protect carbon steel from corrosion in the artificial water. Quantum chemical calculation results reveal that carboxymethyl and the ring of UHCI play the important role when UHCI adsorbed on carbon steel surface, which leads to the enhancement in the corrosion resistance of carbon steel and thereby a reduction in the corrosion rate.

Key words20# carbon steel    imidazoline    corrosion inhibition    seawater desalination    reverse osmosis permeate
    
ZTFLH:     

引用本文:

王玉娜, 聂凯斌, 杨冬, 姚隽旸, 董万田, 廖强强. 模拟海水淡化一级反渗透产水中咪唑啉缓蚀剂对20#碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(5): 407-414.
Yuna WANG, Kaibin NIE, Dong YANG, Juanyang YAO, Wantian DONG, Qiangqiang LIAO. Corrosion Inhibition of 2-Undecyl-N-Carboxymethyl-N- Hydroxyethyl Imidazoline on Carbon Steel in Simulated Seawater Reverse Osmosis Product Water. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 407-414.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.200      或      https://www.jcscp.org/CN/Y2015/V35/I5/407

图1  2-十一烷基-N-羧甲基-N-羟乙基咪唑啉的结构式
图2  UHCI分子的优化分子结构
Concentration / mgL-1 v / g(m2h)-1 η1 / %
0 1.653×10-1 0.000
20 1.014×10-1 38.680
50 6.289×10-2 61.950
100 5.666×10-2 65.720
150 8.471×10-3 94.880
180 3.663×10-3 97.780
表1  经失重法计算得到的腐蚀速率和缓蚀效率
图3  碳钢电极在含不同浓度UHCI的模拟海水淡化一级RO产水中浸泡1 d的极化曲线
Concentration mgL-1 Ecorr / mV vs SCE Icorr μAcm-2 η2 %
0 -654.8 64.790 0.000
20 -647.4 38.740 40.210
50 -430.5 23.140 64.280
100 -399.9 20.800 67.890
150 -328.5 1.139 98.240
180 -267.6 0.567 99.120
表2  碳钢电极在含不同浓度UHCI的模拟海水淡化一级RO产水中浸泡1 d的电化学参数
图4  碳钢电极在含不同浓度UHCI的模拟海水淡化一级RO产水中浸泡1 d的Nyquist和Bode图
图5  碳钢电极在含不同浓度UHCI的模拟海水淡化一级RO产水中浸泡1 d的等效电路
Concentration mgL-1 Rs Ωcm2 Rct kΩcm2 CPE μΩ-1cm-2sn n η3 %
0 136.2 0.101 755.6 0.504 ---
50 121.6 0.163 536.2 0.529 38.120
100 126.4 0.410 326.7 0.493 75.350
150 152.1 2.321 216.5 0.578 95.640
180 155.3 15.040 198.1 0.765 99.320
表3  碳钢电极电化学阻抗的拟合数据
图6  碳钢样品在含180 mg/L UHCI的模拟海水淡化一级RO产水中浸泡1 d的XPS全谱图及分峰图
Element Binding energy / eV Atomic fraction / %
C1s 285.7, 286.2 67.1
N1s 400.9, 399.9 3.7
O1s 532.6 25.9
Fe2p3/2 706.4, 712.0, 715.0 3.3
表4  碳钢样品在含180 mg/L UHCI的模拟海水淡化一级RO产水中浸泡1 d后的元素含量和键能
图7  在空白和含有180 mg/L UHCI的模拟海水淡化一级RO产水中浸泡1 d后碳钢的SEM像
图8  UHCI分子的前线轨道分布
图9  Fukui指数分布图
Atom f k + f k - f k 0 Charge
N5 7.357×10-2 3.472×10-2 5.414×10-2 -1.702×10-1
C4 6.674×10-2 4.365×10-3 3.555×10-2 1.434×10-1
O14 2.390×10-2 2.729×10-1 1.499×10-1 -3.819×10-1
O13 1.371×10-2 1.363×10-1 7.502×10-2 -3.632×10-1
C12 9.132×10-3 8.246×10-2 4.579×10-2 1.499×10-1
C11 4.870×10-3 5.833×10-2 3.160×10-2 -1.669×10-2
N2 2.898×10-3 6.835×10-3 4.867×10-3 4.595×10-2
表5  UHCI分子部分原子的Fukui指数和原子电荷计算数据
[1] Zhang G D. The water problem China is facing in the 21st century[J]. Adv. Earth Sci., 1999, 14(2): 16 (张光斗. 面临21世纪的中国水资源问题[J]. 地球科学进展, 1999,14(2): 16)
[2] National Development Reform Commission, the State Oceanic Administration and the Ministry of Finance. Water Use Special Plan [M]. Beijing: National Development and Reform Commission, the State Oceanic Administration and the Ministry of Finance, 2005 (国家发改委、国家海洋局和财政部. 海水利用专项规划 [M]. 北京: 国家发改委、国家海洋局和财政部, 2005)
[3] Malik A U, Andijani I, Mobin M, et al. An overview of the localized corrosion problems in seawater desalination plants—Some recent case studies[J]. Desalin. Water Treat., 2010, 20(1-3): 22
[4] Li J, Liu G C, Wang W, et al. Research of corrosion resistance of carbon steel in OR desalinated water[J]. Guangzhou Chem. Induction, 2009, 37(4): 95 (李敬, 刘贵昌, 王玮等. 碳钢在反渗透水中耐蚀性研究[J]. 广州化工, 2009, 37(4): 95)
[5] Malik A U, Andijani I N, Mobin M, et al. Corrosion behavior of materials in RO water containing 250~350 ppm chloride[J]. Desalination, 2006, 196(1): 149
[6] Marangou V S, Savvides K. First desalination plant in Cyprus-product water aggresivity and corrosion control[J]. Desalination, 2001, 138(1): 251
[7] Delion N, Mauguin G, Cosin R. Importance and impact of post treatments on design and operation of SWRO plants[J]. Desalination, 2004, 165(15): 323
[8] Wang H Y, Zhou D H, Liang Q Q, et al. Corrosion behavior of carbon steel in seawater and seawater reverse osmosis permeate[J]. Thermal Power Generation, 2012, 14(7): 66 (王宏义, 周东辉, 梁沁沁等. 碳钢在海水及海水淡化一级反渗透产水中的腐蚀行为[J]. 热力发电, 2012, 41(7): 66)
[9] Zhou D H, Wu S H, Xiao L, et al. Corrosion behavior of carbon steel in reverse osmosis permeate of seawater[J]. Corros. Prot., 2012, 33(12): 1057 (周东辉, 吴善宏, 肖丽等. 碳钢在海水淡化一级反渗透产水中的腐蚀行为[J]. 腐蚀与防护, 2012, 33(12): 1057)
[10] Hu J Y, Cao S A, Xie J L. Effect of rust layer on the corrosion behavior of carbon steel in reverse osmosis product water[J]. Acta Phys.-Chim. Sin., 2012, 28(5): 1153 (胡家元, 曹顺安, 谢建丽. 锈层对海水淡化一级反渗透产水中碳钢腐蚀行为的影响[J]. 物理化学学报, 2012, 28(5): 1153
[11] Birnhack L, Voutchkov N, Lahav O. Fundamental chemistry and engineering aspects of post-treatment processes for desalinated water—A review[J]. Desalination, 2011, 273(1): 6
[12] Taylor J, Tang Z, Xiao W, et al. Monitoring of distribution water qualities under various source water blending[J]. Environ. Monit. Assess., 2006, 117(1-3): 59
[13] Wei C Z, Shen S R. Application of membrane method seawater desalination technology in Yuhuan power plant[J]. Electric Power Technol. Environ. Prot., 2010, 26(5): 48 (韦存忠, 沈隼睿. 膜法海水淡化技术在玉环电厂的应用[J]. 电力科技与环保, 2010, 26(5): 48)
[14] Liu G Z, Wang H T, Zhang X, et al. Corrosion inhibition of seawater reverse osmosis permeate [P]. China, CN101705489. 2010 (刘光洲, 王海涛, 张茜等. 一种海水淡化一级反渗透水的缓蚀剂[P]. 中国, CN101705489. 2010)
[15] Liao Q Q, Chen Y Q, Yan A J, et al. Corrosion inhibition of alkyl imidazoline on carbon steel in amidosulphuric acid solution[J]. J.Chin. Soc. Corros. Prot., 2011, 31(5): 356 (廖强强, 陈亚琼, 闫爱军等. 氨基磺酸溶液中烷基咪唑啉对碳钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2011, 31(5): 356)
[16] Parr R G, Yang W. Density functional approach to the frontier-electron theory of chemical reactivity[J]. J. Am. Chem. Soc., 1984, 106(14): 4049
[17] Cao C N. Principles of Erosive Electrochemistry [M]. Beijing: Chemical Industry Press, 2008- (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008)
[18] Chen Y Q, Liao Q Q, Dong W T, et al. Corrosion inhibition of a mixture containing imidazoline on carbon steel in citric acid solution[J]. Corros. Prot., 2012, 33(12): 1055 (陈亚琼, 廖强强, 董万田等. 柠檬酸介质中咪唑啉复配缓蚀剂对碳钢的缓蚀作用[J]. 腐蚀与防护, 2012, 33(12): 1055)
[19] Wang F P,Kang W L,Jing H M. Principles, Methods and Application of Corrosive Electrochemistry[M]. Beijing: Chemical Industry Press, 2008 (王凤平,康万利,敬和民等. 腐蚀电化学原理、方法及应用[M].北京: 化学工业出版社, 2008)
[20] Quan Z L, Chen S H, Li S L. Protection of copper corrosion by modification of self-assembled films of Schiff bases with alkanethiol[J]. Corros. Sci., 2001, 43(6): 1071
[21] Seal S, Sapre K, Kale A, et al. Effect of multiphase flow on corrosion of C-steel in presence of inhibitor: A surface morphological and chemical study[J]. Corros. Sci., 2000, 42(9): 1623
[22] Feng L, Yang H, Wang F. Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5%NaCl saturated Ca(OH)2 solution[J]. Electrochim. Acta, 2011, 58(30): 427
[23] Okafor P C, Liu C B, Liu X, et al. Corrosion inhibition and adsorption behavior of imidazoline salt on N80 carbon steel in CO2-saturated solutions and its synergism with thiourea[J]. J. Solid State Electrochem., 2009, 14(8): 1367
[24] Hu S Q, Hu J C, Yu J H, et al. Density functional theory on inhibition performance of CO2 corrosion-resistant imidazoline derivatives[J]. J. China Univ. Petrol.(Nat. Sci.), 2009, 33(6): 128 (胡松青, 胡建春, 郁金华等. 抗CO2腐蚀咪唑啉衍生物缓蚀性能的密度泛函理论[J]. 中国石油大学学报(自然科学版), 2009, 33(6): 128
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[4] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[5] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[6] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[7] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[8] 李向红, 邓书端, 徐昕. 木薯淀粉三元接枝共聚物对钢在H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[9] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[12] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[13] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[14] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[15] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.