Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (5): 461-466    DOI: 10.11902/1005.4537.2014.197
  本期目录 | 过刊浏览 |
耐蚀钢筋20MnSiCrV在氯盐环境下的腐蚀行为
张建春(),麻晗,左龙飞,李阳
 
Corrosion Behavior of 20MnSiCrV Corrosion Resistant Rebar in Chloride Containing Environment
Jianchun ZHANG(),Han MA,Longfei ZUO,Yang LI
Institute of Research of Iron & Steel, Shasteel, Zhangjiagang 215625, China
全文: PDF(2811 KB)   HTML
  
摘要: 

通过盐雾实验、电化学阻抗谱和极化曲线研究了耐蚀钢筋20MnSiCrV和普通钢筋20MnSiV在氯盐环境下的耐蚀性能和腐蚀敏感性,利用SEM,EMPA线扫描和XRD分析锈层形貌、组成及合金元素的分布。结果表明,耐蚀钢筋的耐Cl-腐蚀承受能力较高,为普通钢筋的1.5倍;腐蚀速率和腐蚀坑深度分别为普通钢筋的58%和74%;两种钢表面锈层主要成分均为Fe3O4,α-FeOOH和γ-FeOOH,其中耐蚀钢筋的锈层为双层结构,Cr和Si明显富集在内层,有利于形成致密内锈层,提高钢筋的耐腐蚀性能。

关键词 耐蚀钢筋电化学阻抗谱腐蚀敏感性内锈层    
Abstract

Corrosion resistance and corrosion sensitivity to chloride containing environment of 20MnSiCrV steel and 20MnSiV steel was comparatively investigated by salt-spray corrosion test with 3.5%NaCl solution, as well as electrochemical impedance spectroscopy and polarization curve measurements in chloride containing alkaline solutions. The formed corrrosion product scales were characterized by SEM, EPMA and XRD. The results show that the corrosion resistance to Cl- of 20MnSiCrV steel was 1.5 times over that of 20MnSiV steel. The average corrosion rate and depth of corrosion pits of 20MnSiCrV steel were 58% and 74% of those of 20MnSiV steel, respectively. The major components of corrosion products of the two steels were Fe3O4, α-FeOOH and γ-FeOOH. Corrosion scale of 20MnSiCrV steel can be differentiated into an inner layer and an outer layer. The inner layer is enriched in Cr and Si, thereby beneficial to the corrosion resistance of the steel.

Key wordscorrosion resistant rebar    electrochemical impedance spectroscopy    corrosion sensitivity    inner rust layer
    
ZTFLH:     
基金资助:江苏省产学研联合创新资金―前瞻性联合研究项目 (BY2013091) 资助

引用本文:

张建春, 麻晗, 左龙飞, 李阳. 耐蚀钢筋20MnSiCrV在氯盐环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(5): 461-466.
Jianchun ZHANG, Han MA, Longfei ZUO, Yang LI. Corrosion Behavior of 20MnSiCrV Corrosion Resistant Rebar in Chloride Containing Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 461-466.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.197      或      https://www.jcscp.org/CN/Y2015/V35/I5/461

Steel C Si Mn P S Cr V
20MnSiCrV 0.200 0.640 0.710 0.024 0.004 0.870 0.030
20MnSiV 0.210 0.490 1.440 0.019 0.007 --- 0.028
表1  实验钢的化学成分
图1  两种钢分别在不含Cl-和含0.2,0.4,0.6 mol/L Cl-的饱和Ca(OH)2溶液中的极化曲线
图2  两种钢在3.5%NaCl溶液中浸泡不同时间后的极化曲线
图3  两种钢在3.5%NaCl溶液中浸泡不同时间后的Nyquist阻抗谱
图4  两种钢在盐雾实验后的增重量
图5  盐雾实验后两种钢样品表面的腐蚀坑深度
图6  两种钢在168 h盐雾实验后的表面形貌
图7  两种钢在168 h盐雾实验后锈层的剖面形貌
图8  两种钢盐雾实验后腐蚀产物的XRD谱
图9  CR钢盐雾实验后锈层中元素分布
[1] Zhu X R,Wang X R. Corrosion and Protection of Metals in Marine Environment[M]. Beijing: National Defense Industry Press, 1999 (朱相荣,王相润. 金属材料的海洋腐蚀与防护[M]. 北京: 国防工业出版社, 1999)
[2] Ma H, Wang S F. Development and practice of energy saving steel reinforcing bar and wire[J]. Heat Treat. Met., 2013, 38(7): 1 (麻晗, 王世芳. 节能型钢筋、线材的研发与生产实践[J]. 金属热处理, 2013, 38(7): 1)
[3] Wang S J. Giving full play to the potential of enterprise development and developing low cost earthquake and corrosion resistant steel [N]. World Metals, 2013-5-21 (B16) (王市均. 充分发挥企业研发潜力,开发低成本抗震耐蚀钢筋 [N]. 世界金属导报, 2013-5-21(B16))
[4] Ge Y,Zhu X C,Li Y. Corrosion Protection of Reinforced Concrete Structures in Bridge[M]. Beijing: Chemical Industry Press, 2011 (葛燕,朱锡昶,李岩. 桥梁钢筋混凝土结构防腐蚀[M]. 北京: 化学工业出版社, 2011)
[5] Zuo L F, Ma H, Huang W K, et al. Development of 400 MPa-grade seawater corrosion resistant rebar in sha-steel[J]. Steel Roll., 2014, 31: 58 (左龙飞, 麻晗, 黄文克等. 沙钢400 MPa级耐海水腐蚀螺纹钢的开发[J]. 轧钢, 2014, 31: 58)
[6] Zhang J C, Huang W K, Ma H. Microstructure and properties of 20MnSiCrV corrosion resistant rebar in continuous cooling transformation[J]. Hot Work. Technol., 2014, 43(6): 91 (张建春, 黄文克, 麻晗. 耐蚀钢筋20MnSiCrV的连续冷却转变组织与性能[J]. 热加工工艺, 2014, 43(6): 91)
[7] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corros. Sci., 1994, 36(2):283
[8] Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transition in rust layers[J]. Corros. Sci., 1983, 23(9): 969
[9] Deliyanni E A, Bakoyannakis D N, Zouboulis A I, et al. Akaganeite-type β-FeOOH nanocrystals: Preparation and characterization[J]. Microporous Mesporous Mater., 2001, 42(1): 49
[10] Dillmann Ph, Mazaudier F, Hoerle S. Advances in under- standing atmospheric corrosion of iron. I. Rust characterization of ancient ferrous artefacrs exposed to indoor atmospheric corrosion[J]. Corros. Sci., 2004, 46(6): 1401
[11] Nishimura T, Katayama H, Noda K. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000, 56(9): 935
[12] Maansfeld F. Corrosion Mechanisms [M]. New York: Marcel Dekker, Inc., 1986
[13] Matsushima I,Jin Y K. Low-alloy Corrosion Resistant Steels[M]. Beijing: Metallurgical Industry Press, 2004 (松岛岩. 靳裕康. 低合金耐蚀钢[M]. 北京: 冶金工业出版社, 2004)
[14] Yamashita M, Nagano H, Misawa T, et al. Structure of protective rust layers formed on weathering steel by long term exposure in the industrial atmospheres of Japan and North America[J]. ISIJ Int., 1998, 38(3): 285
[15] Sei J, Cook D C, Townsend H E. Atmosphere corrosion of different steel in marine, ruraland industrial environments[J]. Corros.Sci., 1999, 41: 1687
[16] Zhang M Y. Overview of the air and sea water corrosion corrosion resistant steel in foreign countries[J]. Shanghai Met., 1982, 3(4): 14 (张明洋. 国外耐大气、海水腐蚀用钢概述[J]. 上海金属, 1982, 3(4): 14)
[1] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[6] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[7] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[8] 刘明,程学群,李晓刚,卢天健. 低合金钢筋在水泥萃取液中钝化膜的耐蚀机理研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[9] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[11] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[12] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[13] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[14] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[15] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.