Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (3): 271-278    DOI: 10.11902/1005.4537.2014.178
  研究报告 本期目录 | 过刊浏览 |
碳钢和镀锌钢在都江堰大气环境中的腐蚀行为研究
曾宪光1,2(),郑兴文2,3,龚敏1,3,范金龙1,陈雪丹1,3
2. 四川理工学院化学与制药工程学院 自贡 643000
3. 四川理工学院 材料腐蚀与防护四川省重点实验室 自贡 643000
Atmospheric Corrosion of Carbon Steel and Galvanized Steel in a Test Site at Dujiangyan City
Xianguang ZENG1,3(),Xingwen ZHENG2,3,Min GONG1,3,Jinlong FAN1,Xuedan CHEN1,3
1. School of Materials Science and Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
2. School of Chemical and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
3. Key Laboratory of Material Corrosion and Protection of Sichuan Province, Sichuan University of Science & Engineering, Zigong 643000, China
全文: PDF(6115 KB)   HTML
摘要: 

研究了碳钢和镀锌钢在都江堰市1个实验点4个微环境不同监测点1和3 a的大气腐蚀行为。对碳钢和镀锌钢在4个监测点的腐蚀形貌、腐蚀速率和腐蚀产物进行了测定和分析。结果表明,4个监测点的温度和相对湿度存在显著差异,导致碳钢和镀锌钢在4个监测点的腐蚀速率不同。随实验周期的增加,碳钢和镀锌钢的腐蚀速率减小。镀锌层能有效地减缓基体金属在大气环境中的腐蚀。而相对湿度和潮湿时间及相对湿度的波动是影响碳钢和镀锌钢腐蚀行为的重要因素。

关键词 大气腐蚀微环境碳钢镀锌钢    
Abstract

The atmospheric corrosion behavior of carbon steel and galvanized steel was investigated by exposure for one and three years respectively at four test spots with different local-environmental conditions in a test site at Dujiangyan city of Sichuan province, and then the corrosion morphology, corrosion rate and corrosion products of the two steels were carefully examined. The results showed that due to the significant differences in local temperature and relative humidity the corrosion rates of the two steels were different at the four test spots. In general, the corrosion rates of the two steels reduced with the increasing corrosion time. Zn coating could effectively protect the steel substrate, i.e. suppress the environmental corrosion in the test spots. The relative humidity, time of wetness and the fluctuation of relative humidity were important affecting factors on the corrosion of the steels.

Key wordsatmospheric corrosion    local environment    carbon steel    galvanized steel
    
基金资助:四川省科技厅国际合作项目 (2011HH0018) 资助

引用本文:

曾宪光,郑兴文,龚敏,范金龙,陈雪丹. 碳钢和镀锌钢在都江堰大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 271-278.
Xianguang ZENG, Xingwen ZHENG, Min GONG, Jinlong FAN, Xuedan CHEN. Atmospheric Corrosion of Carbon Steel and Galvanized Steel in a Test Site at Dujiangyan City. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 271-278.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.178      或      https://www.jcscp.org/CN/Y2015/V35/I3/271

Material C Mn Si S P Al Fe Zn
Carbon steel 0.18 0.51 0.27 0.021 0.03 --- Bal. ---
Galvanized coating --- --- 0.062 0.006 0.01 0.68 2.672 Bal.
表1  碳钢和锌镀层成分
图1  实验周期内都江堰市月降雨量分布图
图2  各监测点温度和相对湿度变化情况
Statistical parameter Monitoring point
A B D
Test time / h 3912 8877 8877
Test month 2011.7~2011.9+2012.1~2012.4 2011.7~2012.7 2011.7~2012.7
RHmix / % 93.9 95.1 99.8
RHmin / % 34.2 75.2 28.8
RHavg / % 81.2 88.4 87.1
tRH>80 / % 63.2 98.5 81.2
Tmix / ℃ 33.8 26.1 31.7
Tmin / ℃ -2.6 0.1 -4.4
Tavg / ℃ 13.5 13.6 13.3
表2  2011.7~2012.7期间各监测点温湿度统计表
图3  1和3 a腐蚀实验后试样的表面形貌
图4  3 年期试样的金相显微图
图5  不同材料试样在各监测点的腐蚀速率
Experimental period Material Corrosion rate / μma-1
A B C D
1 a G 0.283 0.285 0.363 0.486
N 0.297 0.373 0.665 2.444
3 a G 0.111 0.107 0.119 0.174
N 0.087 0.219 0.247 2.774
表3  各监测点实验试样的腐蚀速率
图6  不同监测点锌镀层的保护效益
Material A B C D
G1 C2 C2 C2 C2
N1 C1 C1 C1 C2
G3 C2 C2 C2 C2
N3 C1 C1 C1 C2
表4  按镀锌层和碳钢腐蚀速率得到的材料大气腐蚀性等级
图7  镀锌钢试样的SEM像和EDS结果
图8  碳钢试样表面腐蚀产物SEM像和EDS结果
图9  碳钢试样表面腐蚀产物的XRD谱
[1] de la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel[J]. Corros. Sci., 2011, 53: 604
[2] Morales J, Díaz F, Hernández-Borges J, et al. Atmospheric corrosion in subtropical areas: XRD and electrochemical study of zinc atmospheric corrosion products in the province of Santa Cruz de Tenerife (Canary Islands, Spain)[J]. Corros. Sci., 2006, 48: 361
[3] Morales J, Díaz F, Hernández-Borges J, et al. Atmospheric corrosion in subtropical areas: Statistic study of the corrosion of zinc plates exposed to several atmospheres in the province of santa cruz de tenerife (Canary Islands, Spain)[J]. Corros. Sci., 2007, 49: 526
[4] Veleva L, Acosta M, Meraz E. Atmospheric corrosion of zinc induced by runoff[J]. Corros. Sci., 2009, 51: 2055
[5] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments[J]. Corros. Sci., 1999, 41: 1687
[6] Muster T H, Bradbury A, Trinchi A, et al. The atmospheric corrosion of zinc: the effects of salt concentration, droplet size and droplet shape[J]. Electrochim. Acta, 2011, 56: 1866
[7] Portella M O G, Portella K F, Pereira P A M, et al. Atmospheric corrosion rates of copper, galvanized steel, carbon steel and aluminum in the metropolitan region of Salvador, BA, Northeast Brazil[J]. Procedia Eng., 2012, 42: 171
[8] Casta?o J G, de la Fuente D, Morcillo M. A laboratory study of the effect of NO2 on the atmospheric corrosion of zinc[J]. Atmos. Environ., 2007, 41: 8681
[9] Qu Q, Yan C, Wan Y, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc[J]. Corros. Sci., 2002, 44: 2789
[10] Chen Z Y, Persson D, Leygraf C. Initial NaCl-particle induced atmospheric corrosion of zinc-effect of CO2 and SO2[J]. Corros. Sci., 2008, 50: 111
[11] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India[J]. Corros. Sci., 2006, 48: 3584
[12] Karlén C, Odnevall Wallinder I, Heijerick D, et al. Runoff rates and ecotoxicity of zinc induced by atmospheric corrosion[J]. Sci. Total Environ., 2001, 277: 169
[13] de la Fuente D, Casta?o J G, Morcillo M. Long-term atmospheric corrosion of zinc[J]. Corros. Sci., 2007, 49: 1420
[14] Chen Y Y, Chung S C, Shih H C. Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride[J]. Corros. Sci., 2006, 48: 3547
[15] Shi Y Y, Zhang Z, Zhang J Q, et al. Review of atmospheric corrosion of zinc and zinc alloy[J]. J. Chin. Soc. Corros. Prot., 2005, 25(6): 373 (施彦彦, 张昭, 张鉴清等. 锌及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2005, 25(6): 373)
[16] Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels[J]. J. Chin. Soc. Corros. Prot., 2005, 25(1): 1 (梁彩凤, 侯文泰. 环境因素对钢的大气腐蚀的影响[J]. 中国腐蚀与防护学报, 2005, 25(1): 1)
[17] Tang Q H, Zhang X Y. Mapping of typical atmospheric corrosion at home and abroad[J]. Equip. Environ. Eng., 2010, 7(4): 81 (唐其环, 张先勇. 国内外典型大气腐蚀图及其绘制[J]. 装备环境工程, 2010, 7(4): 81)
[18] Wang Z Y, Yu G C, Han W. Atmospheric corrosion law of three non-ferrous metals in Shenyang area[J]. Chin. J. Nonferrous Met., 2003, 13(2): 367 (王振尧, 于国才, 韩薇. 3种有色金属在沈阳地区的大气腐蚀规律[J]. 中国有色金属学报, 2003, 13(2): 367)
[19] NAHB Research Center. Galvanized steel framing for residential buildings [R]. RP06-1, Washington: American Iron and Steel Institute/Steel Framing Alliance, 2007
[20] Wang Z, Liu J, Wu L, et al. Study of the corrosion behavior of weathering steels in atmospheric environments[J]. Corros. Sci., 2013, 67: 1
[21] Hou W T, Yu J D, Liang C F. Atmospheric corrosion of carbon steels and low alloy steels[J]. J. Chin. Soc. Corros. Prot., 1993, 13(4): 291 (侯文泰, 于敬敦, 梁彩凤. 碳钢及低合金钢的大气腐蚀[J]. 中国腐蚀与防护学报, 1993, 13(4): 291)
[22] Wang C Z. Study on the abnormality of steels corrosion at tropic seashore atmosphere [D]. Chongqing: Chongqing University, 2006 (王成章. 热带海洋大气环境中钢腐蚀异常原因研究 [D]. 重庆: 重庆大学, 2006)
[23] Zhang X G. Efficiency of corrosion protection of steel by galvanizing and prospect for new coating development[J]. J. Chin. Soc.Corros. Prot., 2010, 30(2): 166 (章小鸽. 镀锌保护钢铁的效率和新型锌镀层的发展前景[J]. 中国腐蚀与防护学报, 2010, 30(2): 166)
[24] Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel[J]. Corros. Sci., 1974, 14: 279
[25] Raman A, Kuban B. Infrared spectroscopic analysis of phase transformation processes in rust layers formed on weathering steels in bridge spans[J]. Corrosion, 1988, 44: 483
[26] R?sler K, Baum H, Kukurs O, et al. Character and behavior of a layer of corrosion products on low-alloy steels in natural conditions[J]. Prot. Met., 1981, 17: 514
[27] Antunes R A, Costa J, Araujo D L. Characterization of atmospheric corrosion products formed on steels[J]. Mater. Res., 2003, 6: 403
[28] Luo R, Jiang X H, Wang X J, et al. Research on the atmospheric corrosion mechanism and rust layer evolution for carbon steel[J]. Corros. Sci. Prot. Technol., 2013, 25(5): 433 (罗睿, 姜新华, 王秀静等. 碳钢大气腐蚀机制及锈层演化研究[J]. 腐蚀科学与防护技术, 2013, 25(5): 433)
[29] Wang J J, Guo X D, Zheng W L, et al. Analysis of the corrosion rust on weathering steel and carbon steel exposed in marine atmosphere for three years [J]. Corros. Prot., 2002, 23(7): 288 (王建军, 郭小丹, 郑文龙等. 海洋大气暴露3年的碳钢与耐候钢表面锈层分析 [J]. 腐蚀与防护, 2002, 23(7): 288)
[1] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[2] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[3] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[4] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[5] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[6] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[7] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[8] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[9] 许萍,张硕,司帅,张雅君,汪长征. EPS的主要成分-蛋白质、多糖抑制碳钢腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[10] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[11] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[12] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[13] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[15] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.