Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (4): 326-332    DOI: 10.11902/1005.4537.2014.163
  本期目录 | 过刊浏览 |
Q345钢在模拟酸性海洋气溶胶环境下的大气腐蚀行为
张丹丹1,2,王振尧2(),赵春英1,曹公望2
2. 中国科学院金属研究所 材料环境腐蚀研究中心 沈阳 110016
Atmospheric Corrosion Behavior of Q345 Steel in a Simulated Acidic Marine Aerosols Environment
Dandan ZHANG1,2,Zhenyao WANG2(),Chunying ZHAO1,Gongwang CAO2
1. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
2. Environmental Corrosion Research Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2591 KB)   HTML
摘要: 

以NaCl+HCl为腐蚀介质,利用自制的气溶胶模拟实验装置将腐蚀介质雾化并以湿沉降的方式沉积到Q345钢样品表面,模拟Q345钢在酸性海洋气溶胶环境下的腐蚀过程。采用腐蚀失重、X射线衍射 (XRD)、扫描电镜 (SEM) 及电化学测试技术分别对腐蚀不同时间的Q345钢试样进行测试分析,研究锈层对Q345钢大气腐蚀的影响。结果表明,Q345钢表面形成的锈层不具有保护性;锈层表面腐蚀产物的成分主要为Fe3O4,γ-FeOOH和β-FeOOH,腐蚀后期有少量α-FeOOH出现,锈层结构较疏松;锈层的保护性随腐蚀时间的延长呈现先减弱然后略有增强的变化趋势。

关键词 Q345钢气溶胶大气腐蚀电化学测试    
Abstract

The corrosion process of Q345 steel in a simulated acidic marine aerosol environment was performed by atomizing NaCl+HCl containing aerosols on the test steel surface with a home-made aerosols simulated device. The corrosion evolution of Q345 steel as a function of corrosion time was investigated by mass-loss method, X-ray diffraction (XRD), scanning electron microscopy microscopy (SEM), and electrochemical techniques. The influence of the formed rust layers on the corrosion of Q345 steel was also studied. The results show that the formed rust layers exhibit little protectiveness. The protective effect of the rust layers decreased first with corrosion time, and then enhanced slightly at last.

Key wordsQ345 steel    aerosol    atmospheric corrosion    electrochemical technique
    
基金资助:国家自然科学基金重点项目(51131007)和国防技术基础项目(H102011B002) 资助

引用本文:

张丹丹,王振尧,赵春英,曹公望. Q345钢在模拟酸性海洋气溶胶环境下的大气腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(4): 326-332.
Dandan ZHANG, Zhenyao WANG, Chunying ZHAO, Gongwang CAO. Atmospheric Corrosion Behavior of Q345 Steel in a Simulated Acidic Marine Aerosols Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 326-332.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.163      或      https://www.jcscp.org/CN/Y2015/V35/I4/326

图1  Q345钢的腐蚀失重曲线
图2  Q345钢腐蚀不同时间后腐蚀产物的XRD谱
图3  Q345钢加速腐蚀不同时间后的表面形貌
图4  Q345钢加速腐蚀不同时间后的截面形貌
图5  未腐蚀和带锈的Q345钢在不同实验周期的极化曲线
图6  未腐蚀和带锈的Q345钢的电化学阻抗谱
Corrsion time / h Rs Ωcm2 Q1 Fcm-2 n1 Rr Ωcm2 Q2 Fcm-2 n2 Rt Ωcm2
0 4.388 --- --- --- 9.899×10-4 0.845 1.309×103
24 5.871 7.513×10-3 0.651 7.764 7.432×10-3 0.646 9.055×102
48 2.737 2.362×10-3 0.760 3.840 1.376×10-2 0.618 6.717×102
96 5.646 3.920×10-3 0.588 5.590 1.844×10-2 0.529 3.848×102
192 10.380 1.119×10-2 0.582 8.640 1.154×10-2 0.669 4.497×102
表1  拟合后Q345钢的电化学阻抗谱参数
图7  未腐蚀和带锈的Q345钢的等效电路图
图8  电化学阻抗谱参数Rt随腐蚀时间的变化
[1] Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel[J]. Corros. Sci., 2011, 53(2): 604
[2] Kamimura T, Kashima K, Sugae K, et al. The role of chloride ion on the atmospheric corrosion of steeland corrosion resistance of Sn-bearing steel[J]. Corros. Sci., 2012, 62: 34
[3] Wang Z Y, Yu G C, Han W. Atmospheric corrosion of carbon steel and low alloy steel in polluted environment[J]. J. Iron Steel Res.,2003, 15(3): 47 (王振尧, 于国才, 韩薇. 碳钢和低合金钢在污染大气环境中的大气腐蚀规律[J]. 钢铁研究学报, 2003, 15(3): 47)
[4] Wang Z Y, Yu G C, Han W. Atmospheric corrosion of several metallic materials in Changbaishan and Shenyang area[J]. Corros. Sci. Prot. Technol., 2004, 16(2): 74 (王振尧, 于国才, 韩薇.金属在长白山和沈阳地区的大气腐蚀[J]. 腐蚀科学与防护技术, 2004, 16(2): 74)
[5] Cai J P, Zheng Y P, Liu S R. Synergistic effect of chloride and sulphur-bearing pollutant in atmospheric corrosion of mild steel[J]. J.Chin. Soc. Corros. Prot., 1996, 16(4): 303 (蔡健平, 郑逸苹, 刘寿荣. 氯化物、硫化物对碳钢大气腐蚀的协同作用[J]. 中国腐蚀与防护学报, 1996, 16(4): 303)
[6] Ma Y T, Li Y, Wang F H. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment[J]. Corros. Sci., 2010,52(5): 1796
[7] Marco J F, Davalos J, Gracia M, et al. The corrosion of weathering steel by SO2 polluted atmospheres at its very early stages[J]. Hyperfine Interact., 1990, 57(1-4): 1991
[8] Oesch S. The effect of SO2, NO2, NO and O3 on the corrosion of unalloyed carbon steel and weathering steel-the results of laboratory exposures[J]. Corros. Sci., 1996, 38(8): 1357
[9] Lau N T, Chan C K, Chan L I, et al. A microscopic study of the effects of particle size and composition of atmospheric aerosols on the corrosion of mild steel[J]. Corros. Sci., 2008, 50(10): 2927
[10] Corvo F, Perez T, Dzib L R, et al. Outdoor-indoor corrosion of metals in tropical coastal atmospheres[J]. Corros. Sci., 2008, 50(1): 220
[11] Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under acidified marine droplets[J]. Corros. Sci., 2011, 53(4): 1604
[12] Azmat N S, Ralston K D, Muddle B C, et al.Corrosion of Zn under fine size aerosols and droplets using inkjet printer deposition and optical profilometry quantification[J]. Corros. Sci., 2011, 53(11): 3534
[13] Cole I S, Azmat N S, Kantaet A, et al. What really controls the atmospheric corrosion of zinc? Effect of marine aerosols on atmospheric corrosion of zinc[J]. Int. Mater. Rev., 2009, 54(3): 117
[14] Cole I S, Paterson D A, Ganther W D. Holistic model for atmospheric corrosion. Part 1-Theoretical framework for production, tra-nsportation and deposition of marine salts[J]. Corros. Eng. Sci. Technol., 2003, 38(2): 129
[15] Cole I S, Lau D, Paterson D A. Holistic model for atmospheric corrosion Part 6-From wet aerosol to salt deposit[J]. Corros. Eng. Sci.Technol., 2004, 39(3): 209
[16] Wang B B. Atmospheric corrosion of LY12 and LC4 aluminum alloy in salt lake environment in Western China [D]. Shenyang: University of Chinese Academy of Sciences, 2013 (王彬彬. LY12和LC14铝合金在中国西部盐湖大气环境中腐蚀行为的研究 [D]. 沈阳: 中国科学院大学, 2013)
[17] Wang B B, Wang Z Y, Han W, et al. Atmospheric corrosion of aluminum alloy 2024-T3 exposed to salt lake environment in western China[J]. Corros. Sci., 2012, 59: 63
[18] Veleva L, Farro W. Influence of seawater and its aerosols on copper patina composition[J]. Appl. Surf. Sci., 2012, 258(24): 10072
[19] Muster T H, Bradbury A, Trinchi A, et al. The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape[J]. Electrochim. Acta, 2011, 56(4): 1866
[20] GB/T 16545-1996. Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimensB/T 16545-1996. Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimens[S] (GB/T 16545-1996. 金属与合金的腐蚀—腐蚀试样上腐蚀产物的清除B/T 16545-1996. 金属与合金的腐蚀—腐蚀试样上腐蚀产物的清除[S])
[21] Casta?o J G, Botero C A, Restrepo A H, et al. Atmospheric corrosion of carbon steel in Colombia[J]. Corros. Sci., 2010, 52(1): 216
[22] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India[J]. Corros. Sci., 2006, 48(11):3584
[23] Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci.,2009, 51(5): 997
[24] Wang Z Y, Yu Q C, Chen J J, et al. Atmospheric corrosion behavior of P265GH steel and Q235 steel under dry/humid/immersion alternative condition[J]. J. Chin. Soc. Corros. Prot., 2014, 34(1): 53 (王振尧, 于全成, 陈军君等. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(1):53)
[25] Yang J H, Liu Q Y, Wang X D, et al. The progress of investigation on weathering steel and its rust layer[J]. J. Chin. Soc. Corros. Prot.,2007, 27(6): 367 (杨景红, 刘清友, 王向东等. 耐候钢及其腐蚀产物的研究概况[J]. 中国腐蚀与防护学报, 2007, 27(6): 367)
[26] Yamashita M, Miyuki H, Matsuda Y, et al. The long-term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corros. Sci., 1994, 36(2): 283
[27] Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments[J]. Corros. Sci., 2006, 48(9): 2799
[28] Misawa T, Asami K, Hashimoto K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel[J]. Corros. Sci., 1974, 14(4): 279
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[3] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[4] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[5] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[6] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[7] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[8] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[9] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[10] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[11] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[12] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[13] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[14] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[15] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.