Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (4): 353-358    DOI: 10.11902/1005.4537.2014.155
  本期目录 | 过刊浏览 |
阴极极化和应力耦合作用下X80钢氢渗透行为研究
郭望,赵卫民(),张体明,杜天海,王勇
Hydrogen Permeation Behavior of X80 Steel under Cathodic Polarization and Stress
Wang GUO,Weimin ZHAO(),Timing ZHANG,Tianhai DU,Yong WANG
School of Mechanical and Electrical Engineering, China University of Petroleum, Qingdao 266580, China
全文: PDF(1425 KB)   HTML
摘要: 

采用改进的D-S双电解池与慢应变速率拉伸实验机相结合,研究了阴极保护和应力耦合作用下X80钢在3.5%NaCl+1 g/L Na2S溶液中的氢渗透行为。通过变电位氢渗透实验,分析极化电位对氢渗透行为的影响并得到析氢敏感电位。进行不同应力水平下的恒电位极化氢渗透实验,采用Laplace方程分析氢渗透曲线,计算相关的氢渗透参数。结果表明,在各个应力水平下,随阴极极化电位负移,稳态渗氢电流密度增大,析氢敏感电位负于-1000 mV (vs SCE)。在弹性应变时,氢陷阱密度变小,氢扩散系数增大;进入塑性变形阶段后由于位错产生,氢陷阱密度逐渐升高,氢扩散系数降低;吸附氢浓度与扩散系数呈现相反的变化规律。

关键词 阴极极化X80钢氢渗透应力    
Abstract

Hydrogen permeation behavior of X80 steel under applied cathodic polarization and stress in 3.5%NaCl+1 g/L Na2S solution was studied by means of a modified D-S cell combined with slow strain rate tensile machine. The effect of polarization potential on hydrogen permeation behavior and the hydrogen evolution potential were acquired by hydrogen permeation test with changing polarization potential. Besides, potentiostatic polarization hydrogen permeation test under different stress levels was performed and then the hydrogen permeation parameters were calculated by the Laplace equation. Results show that under various stress levels, the steady-state hydrogen permeation current density increased as the cathodic polarization potential decreased, and the hydrogen evolution potential was lower than -1000 mV (vs SCE). In the stage of elastic strain, hydrogen trap density decreased and the apparent hydrogen diffusion coefficient increased. After entering the stage of plastic deformation, hydrogen trap density increased and the hydrogen diffusion coefficient gradually decreased due to the generation of dislocation. The concentration of adsorbed hydrogen shows a change tendency opposite to the hydrogen diffusivities.

Key wordscathodic polarization    X80 steel    hydrogen permeation    stress
    
基金资助:山东省自然科学基金项目 (ZR2013EEL023) 和中央高校基本科研业务费专项资金项目 (14CX05020A) 资助

引用本文:

郭望,赵卫民,张体明,杜天海,王勇. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
Wang GUO, Weimin ZHAO, Timing ZHANG, Tianhai DU, Yong WANG. Hydrogen Permeation Behavior of X80 Steel under Cathodic Polarization and Stress. Journal of Chinese Society for Corrosion and protection, 2015, 35(4): 353-358.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.155      或      https://www.jcscp.org/CN/Y2015/V35/I4/353

图1  X80钢的显微组织
图2  氢渗透实验装置
图3  X80钢在3.5%NaCl+1 g/L Na2S水溶液中的阴极极化曲线
图4  不同应力水平下X80钢的变电位氢渗透曲线
图5  不同应力水平下X80钢在-1100 mV阴极极化时的氢渗透曲线
Stress level D×10-7 /cm2s-1 C0×10-6 molcm-3
0%Rp0.2 5.049 3.246
60%Rp0.2 7.481 2.571
90%Rp0.2 6.529 2.969
110%Rp0.2 4.328 4.522
表1  不同应力水平下X80钢在-1100 mV极化时的氢渗透参数
图6  不同应力水平下X80钢的Da-1000/tp关系曲线
图7  不同应力水平下X80钢的氢陷阱密度
[1] Chen R Q. Applicability of X65 steel subsea pepeline in CO2/H2S corrosion environments[J]. Corros. Prot., 2012, 33(5): 371
[2] Li C J, Du M. Research and development of cathodic protection for steels in deep seawater[J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 10 (李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33(1): 10)
[3] Lin Z Q, Ma L, Yan Y G. Effect of cathodic polarization on the susceptibility to hydrogen embrittlement of welding line in high strength hull structural steel[J]. J. Chin. Soc. Corros. Prot., 2011, 31(1): 46 (林召强, 马力, 闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2011, 31(1): 46)
[4] Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels[J]. Corros. Sci., 2006, 48(12): 4378
[5] Sohn S S, Han S Y, Bae J, et al. Effects of microstructure and pipe forming strain on yield strength before and after spiral pipe forming of API X70 and X80 pipeline steel sheets[J]. Mater. Sci. Eng., 2013, A573: 18
[6] ASTMG148-97. Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique[S]
[7] Zhang L, Du M, Liu J F, et al. Effects of polarized potentials on the susceptibility to hydrogen embrittlement of X70 steel in seawater[J]. Mater. Sci. Technol., 2011, 19(5): 96 (张林, 杜敏, 刘吉飞等. 海水中极化电位对X70钢氢脆敏感性的影响[J]. 材料科学与工艺, 2011, 19(5): 96)
[8] Chen Y X, Chang Q G. Effect of traps on diffusivity of hydrogen in 20 g clean steel[J]. Acta Metall. Sin., 2011, 47(5): 548 (陈业新, 常庆刚. 20 g纯净钢中氢陷阱对氢扩散系数的作用[J]. 金属学报, 2011, 47(5): 548)
[9] Yang K, Xian A P, Cao M Z, et al. An improved method for calculating diffusivity of hydrogen[J]. Acta Metall. Sin., 1988, 24(2): 218 (杨柯, 冼爱平, 曹明洲等. 一种计算氢扩散系数的新方法[J]. 金属学报, 1988, 24(2): 218)
[10] Cheng Y F. Analysis of electrochemical hydrogen permeation thro- ugh X-65 pipeline steel and its implications on pipeline stress corrosion cracking[J]. Int. J. Hydrogen Energy, 2006, 32: 1269
[11] Casta?o R P, Ramunni V P, Bruzzoni P. Hydrogen trapping in an API 5L X60 steel[J]. Corros. Sci., 2012, 54: 106
[12] Yen S K, Huang I B. Critical hydrogen concentration for hydrogen-induced blistering on AISI 430 stainless steel[J]. Mater. Chem.Phys., 2003, 80(3): 662
[13] Yu Q. The research of hydrogen sensitive permeation behaviors and environment sensitive fracture mechanism of high strength steel 35CrMo in marine atmosphere [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2008 (于青. 35CrMo高强度钢在海洋大气中的氢渗透行为与环境致脆机理研究 [D]. 青岛: 中国科学院海洋研究所, 2008)
[14] Lv X Q.Diffusion of hydrogen in thick clean steel and effect of hydrogen on mechanical properties [D]. Shanghai: Shanghai University, 2013 (吕学奇. 氢在纯净宽厚板钢中的扩散及对力学性能的影响 [D]. 上海: 上海大学, 2013)
[15] Sung J K, Hwan G J, Kyoo Y K. Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment[J]. Electrochim. Acta, 2012, 78: 139
[1] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[2] 戈方宇, 黄峰, 袁玮, 肖虎, 刘静. 交变载荷频率对MS X65管线钢在H2S介质中腐蚀电化学行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[3] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[4] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[5] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[7] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[8] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[9] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[10] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[11] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[13] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[14] 李雨,关蕾,王冠,张波,柯伟. 机械应力对不锈钢点蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.