Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (1): 49-54    DOI: 10.11902/1005.4537.2014.141
  本期目录 | 过刊浏览 |
苯并咪唑衍生物在1 mol/L HCl溶液中对45#碳钢缓蚀行为的研究
王青, 马雪梅, 石海燕, 原珊, 郭建峰, 梁栋, 胡志勇()
中北大学化工与环境学院 太原 030051
Inhibition Performance of Benzimidazole Derivatives for Steel 45(GB) in 1 mol/L HCl Solution
WANG Qing, MA Xuemei, SHI Haiyan, YUAN Shan, GUO Jianfeng, LIANG Dong, HU Zhiyong()
College of Chemical Engineering and Environment, North University of China, Taiyuan 030051, China
全文: PDF(1823 KB)   HTML
摘要: 

以2-氨基苯并咪唑和含三嗪环阴离子表面活性剂为原料合成了两种苯并咪唑衍生物BSC6T和BSC8T。采用静态失重、动电位极化、电化学阻抗和扫描电镜等方法研究了它们在1 mol/L HCl溶液中对45碳钢的缓蚀行为。结果表明,与2-氨基苯并咪唑相比,BSC6T和BSC8T具有优良的缓蚀性能,其中,BSC8T的缓蚀性能更佳。在25 ℃下,1 mol/L HCl溶液中,当BSC8T使用浓度达到0.9 g/L时,缓蚀率为98.6%。BSC8T是一种以阴极为主的混合型缓蚀剂。

关键词 缓蚀剂苯并咪唑衍生物阴离子表面活性剂电化学测试    
Abstract

Two new benzimidazole derivatives, BSC6T and BSC8T, were synthesized using 2-aminobenzimidazole and triazine anionic surfactants. Their inhibition effect on steel 45(GB) in 1 mol/L HCl solution were studied by means of mass loss method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Results showed that the inhibition efficiency increased significantly with the increasing inhibitor concentration; BSC6T and BSC8T acted as a mixed type inhibitors with cathodic inhibition as the dominative action; BSC6T and BSC8T had better inhibition effect rather than 2-aminobenzimidazole; however, among the three inhibitors, BSC8T exhibited the best inhibition performance with inhibition efficiency up to 98.6% for a concentration of 0.9 g/L.

Key wordsinhibitor    benzimidazole derivative    anionic surfactant    electrochemical measurement
    
ZTFLH:  TG174.42  
基金资助:山西省科技攻关项目 (20130313006-3) 资助
作者简介: null

王青,女,1989年生,硕士生

引用本文:

王青, 马雪梅, 石海燕, 原珊, 郭建峰, 梁栋, 胡志勇. 苯并咪唑衍生物在1 mol/L HCl溶液中对45#碳钢缓蚀行为的研究[J]. 中国腐蚀与防护学报, 2015, 35(1): 49-54.
Qing WANG, Xuemei MA, Haiyan SHI, Shan YUAN, Jianfeng GUO, Dong LIANG, Zhiyong HU. Inhibition Performance of Benzimidazole Derivatives for Steel 45(GB) in 1 mol/L HCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 49-54.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.141      或      https://www.jcscp.org/CN/Y2015/V35/I1/49

图1  两种缓蚀剂的分子结构
图2  45#碳钢在含有不同浓度缓蚀剂的1 mol/L HCl溶液中的缓蚀率
图3  45#碳钢在含有不同浓度缓蚀剂的1 mol/L HCl溶液中的极化曲线
Inhibitor c / (gL-1) Ecorr (vs SCE) / mV Icorr / (mAcm-2) bc / (mVdec) ba / (mVdec) IE / %
2-amino-
benzimidazoe
Blank -375.8 1.960 146 107 ---
0.15 -373.9 1.350 132 98.8 31.1
0.30 -387.4 0.990 113 80.8 49.5
0.45 -420.7 0.948 142 79.8 51.6
0.60 -384.5 0.877 129 107 55.3
0.75 -397.2 0.797 131 103 59.3
0.90 -395.0 0.604 137 99.1 69.2
Blank -375.8 1.960 146 107 ---
0.15 -383.2 1.220 131 91.7 37.8
0.30 -361.6 0.940 127 84.5 52.0
BSC6T 0.45 -383.4 0.748 85.1 58.6 61.8
0.60 -383.5 0.661 149 92.0 66.3
0.75 -352.5 0.512 125 71.1 73.9
0.90 -379.0 0.359 154 71.5 81.7
Blank -375.8 1.960 146 107 ---
0.15 -405.2 0.364 195 78.7 81.4
0.30 -357.9 0.309 120 79.2 84.2
BSC8T 0.45 -358.4 0.242 121 76.2 87.7
0.60 -385.5 0.117 117 64.8 94.0
0.75 -372.3 0.116 180 85.3 94.0
0.90 -394.5 0.096 171 70.5 95.1
表1  45#碳钢在含有不同浓度缓蚀剂的1 mol/L HCl溶液中的动电位极化参数
图4  45#碳钢在添加不同浓度缓蚀剂的1 mol/L HCl溶液中的Nyquist谱
图5  阻抗等效电路
Inhibitor c / (gL-1) Rs / (Ωcm2) Rct / (Ωcm2) Cdl / (μFcm-2) IE / %
Blank 1.622 7.695 687.9 ---
0.15 1.271 10.74 409.9 28.4%
0.30 1.451 11.50 240.1 33.1%
2-aminobenzimidazole 0.45 1.074 12.28 223.5 37.3%
0. 60 1.313 13.46 106.3 42.8%
0.75 1.294 16.44 102.5 53.2%
0.90 1.110 19.17 82.26 59.8%
Blank 1.622 7.695 687.9 ---
0.15 1.179 15.69 199.6 50.9%
0.30 1.116 26.89 134.1 71.4%
BSC6T 0.45 1.323 76.29 109.3 89.9%
0.60 1.166 103.4 91.33 92.6%
0.75 1.300 204.7 68.53 96.2%
0.90 1.200 329.8 17.01 97.7%
Blank 1.622 7.695 687.9 ---
0.15 1.327 41.96 280 81.7%
0.30 1.266 58.85 239 86.9%
BSC8T 0.45 1.182 80.81 31.02 90.5%
0.60 1.426 155.4 23.56 95.0%
0.75 1.498 329.5 22.25 97.7%
0.90 1.244 556.1 11.52 98.6%
表2  45#碳钢在添加不同浓度缓蚀剂的1 mol/L HCl溶液中的阻抗拟合参数
图6  45#碳钢表面形貌的SEM像
[1] Li J L, Liang C H, Huang N B, et al. Progress on research of benzimidazole derivative as corrosion inhibitor[J]. Corros. Sci. Prot. Technol., 2011, 23(2): 191
[1] (李杰兰, 梁成浩, 黄乃宝等. 苯并咪唑衍生物缓蚀剂研究进展[J]. 腐蚀科学与防护技术, 2011, 23(2): 191)
[2] Hu J C, Li C Z, Yan Q, et al. Inhibition performance study on benzimidazole and benzimidazole derivatives[J]. Mater. Prot., 2011, 44(11): 75
[2] (胡建春, 李春志, 严奇等. 苯并咪唑及其衍生物的缓蚀性能[J]. 材料保护, 2011, 44(11): 75)
[3] Li X X, Yang W Z. Inhibition of 1-proply-2-methly-3-alkylbenzimidazole on Q235 steel in HCl solution[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 168
[3] (李相旭, 杨文忠. 盐酸介质中1-丙基-2-甲基-3-烷基苯并咪唑盐对Q235钢的缓蚀作用[J]. 中国腐蚀与防护学报, 2012, 32(2): 168)
[4] Khaled K F. The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions[J]. Electrochim. Acta, 2003, 48(17): 2493
[5] Aljourani J, Raeissi K, Golozar M A. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1 M HCl solution[J]. Corros. Sci., 2009, 51(8): 1836
[6] Zhang J, Zhao W M, Guo W Y, et al. Theoretical evaluation of corrosion inhibition performance of benzimidazole corrosion inhibitors[J]. Acta Phys.-Chim. Sin., 2008, 24(7): 1239
[6] (张军, 赵卫民, 郭文跃等. 苯并咪唑类缓蚀剂缓蚀性能的理论评价[J]. 物理化学学报, 2008, 24(7): 1239)
[7] Popova A, Christov M, Raicheva S, et al. Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion[J]. Corros. Sci., 2004, 46(6): 1333
[8] Popova A, Christov M, Deligeorgiev T. Influence of the molecular structure on the inhibitor properties of benzimidazole derivatives on mild steel corrosion in 1 M hydrochloric acid[J]. Corrosion, 2003, 59(9): 756
[9] Li H, Qiu L G, Xie A J, et al. Adsorption and corrosion inhibition of cationic Gemini surfactants on steel surface in hydrochloric acid[J]. Corros. Sci. Prot. Technol., 2005, 17(4): 244
[9] (刘卉, 裘灵光, 谢安建等. 盐酸溶液中阳离子Gemini表面活性剂在碳钢表面的吸附与缓蚀性能研究[J]. 腐蚀科学与防护技术, 2005, 17(4): 244)
[10] Michael L F. Understanding the effect of surfactant aggrega-tion on corrosion inhibition of mild steel in acidic medium[J]. Corros. Sci., 2002, 44: 2865
[11] Li X H, Deng S D, Xie X G. Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution[J]. Corros. Sci., 2014, 81: 162
[12] Pauline S A, Sahila S, Gopalakrishnan C, et al. Synthesis, characterization and corrosion protection property of terpolymers derived from poly (MAn-co-MMA) containing benzimidazole derivative as pendant group[J]. Prog. Org. Coat., 2011, 72(3): 443
[13] Sun M Q, Ge J J, Zhang G C, et al. Relationship between molecular structure of imidazoline and its corrosion inhibition performance in salty solution with saturated CO2[J]. Petrochem. Technol., 2005, 34(12): 1177
[13] (孙铭勤, 葛际江, 张贵才等. 饱和CO2盐水中咪唑啉分子结构与其缓蚀性能的关系[J]. 石油化工, 2005, 34(12): 1177)
[14] Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing: Chemical Industry Press, 2008
[14] (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008)
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[5] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[8] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[9] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[10] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[11] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[12] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[13] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[14] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[15] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.