Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (3): 189-198    DOI: 10.11902/1005.4537.2014.101
  综合评述 本期目录 | 过刊浏览 |
核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展
朱若林,张志明,王俭秋(),韩恩厚
Review on SCC Crack Growth Behavior of Dissimilar Metal Welds for Nuclear Power Reactors
Ruolin ZHU,Zhiming ZHANG,Jianqiu WANG(),En-Hou HAN
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3326 KB)   HTML
摘要: 

综述了轻水堆核电站大型容器壳体与主管道连接部位中异种金属焊接接头应力腐蚀裂纹扩展行为的研究进展,阐述了国内外关于材料、应力、环境等多种因素对应力腐蚀裂纹扩展行为的影响,并对需要进一步研究的方向进行了展望。

关键词 轻水堆异种金属焊接应力腐蚀裂纹扩展高温高压水    
Abstract

Recent progress on stress corrosion cracking (SCC) crack growth behavior of dissimilar metal welds between reactor pressure vessel and reactor coolant piping is reviewed in this paper. The worldwide studies concerning the effect of materials, stress and environmental conditions on SCC crack growth behavior are described. Meanwhile, the direction of further research is also forecasted.

Key wordslight water reactor    dissimilar metal weld    stress corrosion crack    crack growth    high temperature and high pressure water
    
基金资助:国家科技重大专项项目 (2011ZX06004009) 和国家自然科学基金项目 (51025104) 资助

引用本文:

朱若林,张志明,王俭秋,韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
Ruolin ZHU, Zhiming ZHANG, Jianqiu WANG, En-Hou HAN. Review on SCC Crack Growth Behavior of Dissimilar Metal Welds for Nuclear Power Reactors. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 189-198.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.101      或      https://www.jcscp.org/CN/Y2015/V35/I3/189

图1  喷管和管道异种金属焊接位置的典型示意图[2]
图2  反应堆容器顶部J型坡口焊接示意图[3]
图3  182/82焊接合金分布图[3]
图4  退火态 (或焊后) 材料SCC沿晶开裂形貌[8]
Plant Inspection date Nozzle Type of indication Indication depth a / cm OD indication length l / cm a: thickness l: circumference
Calvert cliffs 2 2005 CL drain Cric 0.142 1.595 10% 10%
Calvert cliffs 2 2005 HL drain Axial 0.996 0.000 70% 0%
DC cook 2005 Safety Axial 3.129 0.000 88% 0%
Calvert cliffs 1 2006 HL drain Cric 0.254 1.143 19% 5%
Calvert cliffs 1 2006 Relief Axial 0.254 0.000 8% 0%
Calvert cliffs 1 2006 Surge Circ 1.016 6.096 25% 6%
Davis besse 2006 CL drain Axial 0.142 0.000 7% 0%
San onofre 2 2006 Safety Axial 1.067 0.000 30% 0%
San onofre 2 2006 Safety Axial 1.067 0.000 30% 0%
Wolf creek 2006 Relief Cric 0.864 29.210 25.8% 46%
Wolf creek 2006 Safety Cric 0.754 6.350 22.5% 10%
Wolf creek 2006 Surge Cric 1.181 22.225 32.1% 19%
Farley 2 2007 Surge Circ 1.270 7.620 33% 6%
Davis besse 2008 --- Axial --- --- --- ---
Crystal river 3 2008 --- Cric --- --- --- ---
表1  2005年至2008年上半年在反应堆一回路循环冷却水中, 182/82合金对接焊焊件检测出裂纹情况[16]
图5  SCC裂纹到达融合线之前沿I型和II型晶界生长和裂纹生长至融合线处的SEM像[25]
图6  300 ℃时Ni-H2O的Pourbaix图[53]
图7  溶解氢对镍基合金在高温水中裂纹扩展速率的影响[53]
[1] Rebak R B. 2012 Research topical symposium proceedings "Corrosion degradation of materials in nuclear power reactors-lessons lear-ned future challenges" introduction[J]. Corrosion, 2013, 69(10):951
[2] Kerr M, Hill M R, Olson M D. Study of residual stresses in compact tension specimens fabricated from weld metal[J]. Corrosion, 2013, 69(10): 975
[3] Celin R,Tehovnik F.Degradation of a Ni-Cr-Fe alloy in a pressurised-water nuclear power plant [J]. Mater. Technol, 2011, 45(2): 151
[4] Tsuruta T,Sato K,Asada S,et al. PWSCC of nickel base alloys in vapor phase environment of pressurizer [A]. Icone16: Proceeding of the 16th International Conference on Nuclear Engineering [C]. Orlando: ASME, 2008: 571
[5] Chung W C, Huang J Y, Tsay L W, et al. Microstructure and stress corrosion cracking behavior of the weld metal in alloy 52-A508 dissimilar welds[J]. Mater. Trans. JIM, 2011, 52(1): 12
[6] 0 Li G F, Congleton J. Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 ℃[J]. Corros. Sci., 2000, 42(6): 1005
[7] Muransky O, Smith M C, Bendeich P J, et al. Validated numerical analysis of residual stresses in Safety Relief Valve (SRV) nozzle mock-ups[J]. Comput. Mater. Sci., 2011, 50(7): 2203
[8] Andresen P L.Emerging issues and fundamental processes in environmental cracking in hot water (Reprinted from proceedings of the CORROSION/2007 research topical symposium"Advances in environmentally assisted cracking", 2007)[J]. Corrosion, 2008, 64(5): 439
[9] Cattant F, Crusset D, Feron D. Corrosion issues in nuclear industry today[J]. Mater. Today, 2008, 11(10): 32
[10] Andresen P L, Morra M M. Stress corrosion cracking of stainless steels and nickel alloys in high-temperature water[J]. Corrosion, 2008, 64(1): 15
[11] Paraventi D J, Moshier W C.The effect of cold work and dissolved hydrogen in the stress corrosion cracking of Alloy 82 and Alloy 182 weld metal [A]. Proc. 12th Int. Symp. Environmental Degradation of Materials in Nuclear Power System [C]. Warrendale: TMS, 2005: 543
[12] Alexandreanu B,Chen Y,Natesan K,et al. SCC behavior of Alloy 690 HAZ in a PWR environment [A]. Proceedings of the Asme Pressure Vessels and Piping Conference [C]. Baltimore: ASME, 2012: 385
[13] Amzallag C,Boursier J,Pages C,et al. Stress corrosion life experience of 182 and 82 welds in French PWRs [A]. 5th Fontevraud Conf. Contribution of Material Investigation to the Resolution of Problems Encountered in Pressurized Water Reactors [C]. Fontevraud, 2002: 22
[14] Scott P M.An overview of materials degradation by stress corrosion in PWRs [A]. European Corrosion Conference: Long Term Prediction and Modelling of Corrosion, EUROCORR 2004 [C]. Nice: Cefracor, 2004: 3
[15] Bamford W, Hall J.A review of alloy 600 cracking in operating nuclear plants including alloy 82 and 182 weld behavior [A]. 12th International Conference on Nuclear Engineering (ICONE12) [C]. Arlington: ASME, 2004: 131
[16] Gorman J, Hunt S, Riccardella P. PWR Reactor Vessel Alloy 600 Issues [M]. New York: ASME, 2009: 63
[17] Yvon P, Carre F.Structural materials challenges for advanced reactor systems[J]. J. Nucl. Mater., 2009, 385(2): 217
[18] Young G A, Etien R A, Hackett M J, et al. Physical metallurgy, weldability, and in-service performance of nickel-chromium filler metals used in nuclear power systems [A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors [C]. Colorado Sprin-gs: Wiley Online Library, 2009: 2431
[19] Szklarskasmialowska S, Cragnolino G. Stress-corrosion cracking of sensitized type-304 stainless-steel in oxygenated pure water at elevated-temperatures (review)[J]. Corrosion, 1980, 36(12): 653
[20] Huang J Y, Liu R F, Chiang M F, et al. Corrosion fatigue behavior of dissimilar metal weldments under nominal constant Delta K loading mode in a simulated BWR coolant environment[J]. Corros. Sci., 2011, 53(6): 2289
[21] Huang J Y, Chiang M F, Jeng S L, et al. Environmentally assisted cracking behavior of dissimilar metal weldments in simulated BWR coolant environments[J]. J. Nucl. Mater., 2013, 432(1-3): 189
[22] Huang J Y, Yung T Y, Huang J S, et al. Effects of heat treatment and chromium content on the environmentally assisted cracking behavior of the dissimilar metal welds in simulated BWR coolant environments[J]. Corros. Sci., 2013, 75: 386
[23] Ozawa M, Yamamoto Y, Nakata K, et al. Evaluation of SCC crack growth rate in alloy 600 and its weld metals in simulated BWR environments [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors [C]. Salt Lake City: TMS, 2006: 651
[24] Lee H T, Wu J L. Intergranular corrosion resistance of nickel-based alloy 690 weldments[J]. Corros. Sci., 2010, 52(5): 1545
[25] Hou J, Peng Q, Takeda Y, et al. Microstructure and stress corrosion cracking of the fusion boundary region in an alloy 182-A533B low alloy steel dissimilar weld joint[J]. Corros. Sci., 2010, 52(12): 3949
[26] Peng Q, Xue H, Hou J, et al. Role of water chemistry and microstructure in stress corrosion cracking in the fusion boundary region of an Alloy 182-A533B low alloy steel dissimilar weld joint in high temperature water[J]. Corros. Sci., 2011, 53(12): 4309
[27] White G A, Nordmann N S, Hickling J, et al. Development of crack growth rate disposition curves for primary water stress corrosion cracking (PWSCC) of alloy 82, 182, and 132 weldments [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors [C]. Salt Lake City: TMS, 2006: 511
[28] Bruemmer S M, Charlot L A, Henager C H. Microstructure and microdeformation effects on IGSCC of alloy-600 steam-generator tubing[J]. Corrosion, 1988, 44(11): 782
[29] Guerre C, Chaumun E, Crepin J, et al. Stress corrosion cracking of nickel base alloys in PWR primary water [A]. 1st International Workshop on Materials Innovation for Nuclear Optimized Systems[C].CEA Saclay: EPJ Web of Conferences, 2013
null
[30] Yeh T K, huang G R, Wang M Y, et al. Stress corrosion cracking in dissimilar metal welds with 304L stainless steel and Alloy 82 in high temperature water[J]. Prog. Nucl. Energy, 2013, 63: 7
[31] Huang J Y, Chiang M F, Kuo R C, et al. Stress corrosion cracking behavior of dissimilar metal weldments in high temperature water environments [A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Colorado Springs: TMS, 2011: 1105
[32] Saito N, Tanaka S, Sakamoto H. Effect of corrosion potential and microstructure on the stress corrosion cracking susceptibility of nickel-base alloys in high-temperature water[J]. Corrosion, 2003, 59(12): 1064
[33] Alexandreanu B,Chopra O K,Shack W J. The stress corrosion cracking behavior of alloys 690 and 152 weld in a PWR environment [A]. Pressure Vessel and Piping Division of the American Society of Mechanical Engineers [C]. Chicago: ASME, 2009: 153
[34] Alexandreanu B,Chopra O K,Shack W J. Crack growth rates of nickel alloy welds in a PWR environment [A]. ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference [C]. Vancouver: ASME, 2006: 153
[35] Seifert H P, Ritter S, Shoji T, et al. Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment[J]. J. Nucl. Mater., 2008, 378(2): 197
[36] Kim S W, Kim H P, Jeong J U, et al. Effect of residual stress of dissimilar metal welding on stress corrosion cracking of bottom-mounted instrumentation penetration mock-up[J]. Corrosion, 2010 66(10): 106001
[37] Zhang T,Brust F W,Wilkowski G,et al. Welding residual stress in a large diameter nuclear reactor pressure vessel nozzle [J]. J. Press Vess-T ASME, 2013, 135(2): 021208
[38] Liu R F, Huang C C. Welding residual stress analysis for weld overlay on a BWR feedwater nozzle[J]. Nucl. Eng. Des., 2013, 256: 291
[39] Lu Z, Shoji T, Takeda Y, et al. The dependency of the crack growth rate on the loading pattern and temperature in stress corrosion cracking of strain-hardened 316L stainless steels in a simulated BWR environment[J]. Corros. Sci., 2008, 50(3): 698
[40] Andresen P L, Young L M, Emigh P W, et al. Stress corrosion crack growth rate behavior of ni alloys 182 and 600 in high temperature water [A]. Corrosion/2002 [C]. Denver: NACE, 2002: 1
[41] Zhang L T,Wang J Q. Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment [J]. J. Nucl. Mater.., 2014, 446(1-3): 15
[42] Toloczko M B, Olszta M J, Bruemmer S M. Stress corrosion crack growth of alloy 52m in simulated PWR primary water [A]. 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors [C]. Colorado Sprin-gs: TMS, 2011: 225
[43] Lu Z, Shoji T, Xue H, et al. Synergistic effects of local strain-hardening and dissolved oxygen on stress corrosion cracking of 316NG weld heat-affected zones in simulated BWR environments[J]. J. Nucl. Mater., 2012, 423(1-3): 28
[44] Lu Z, Shoji T, Meng F, et al. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water[J]. Corros. Sci., 2011, 53(5): 1916
[45] Alexandreanu B,Chen Y,Natesan K,et al. Cyclic and SCC behavior of alloy 152 weld in a PWR environment [A]. Proceedings of the ASME Pressure Vessels and Piping Conference [C]. Baltimore: AMSE, 2012: 639
[46] Terachi T, Yamada T, Miyamoto T, et al. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water[J]. J. Nucl. Mater., 2012, 426(1-3): 59
[47] Zhanpeng L, Shoji T, Takeda Y, et al. Transient and steady state crack growth kinetics for stress corrosion cracking of a cold worked 316L stainless steel in oxygenated pure water at different temperatures[J]. Corros. Sci., 2008, 50(2): 561
[48] Andresen P L. Stress corrosion cracking of current structural materials in commercial nuclear power plants[J]. Corrosion, 2013, 69(10): 1024
[49] Stjarnsater J, Jenssen A, Jansson C, et al. The effect of temperature on the crack growth rate of stainless steel and ni-alloys in simulated BWR environment [A]. 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Colorado Springs: TMS, 2011: 827
[50] Hoang P H, Gangadharan A, Ramalingam S C. Primary water stress corrosion cracking inspection ranking scheme for alloy 600 components[J]. Nucl. Eng. Des., 1998, 181(1-3): 209
[51] Kim Y J, Andresen P L, Moran E, et al. Modification of surface property for controlling the Type 304 stainless steel electrochemical corrosion potential in 288 ℃ water[J]. Corrosion, 2005, 61(7): 648
[52] Lima L I L,Schvartzman M M A M,Figueiredo C A,et al. Stress corrosion cracking behavior of alloy 182 weld in pressurized water reactor primary water environment at 325 ℃ [J]. Corrosion, 2011, 67(8): 085004
[53] Andresen P L, Hickling J, Ahluwalia A, et al. Effects of hydrogen on stress corrosion crack growth rate of nickel alloys in high-temperature water[J]. Corrosion, 2008, 64(9): 707
[54] Andresen P L, Young L M. Crack-tip microsampling and growth-rate measurements in low-alloy steel in high-temperature water[J]. Corrosion, 1995, 51(3): 223
[55] Andresen P L, Emigh P W, Morra M M, et al. Effects of PWR primary water chemistry and deaerated water on SCC [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors [C]. Salt Lake City : TMS, 2006: 989
[56] Korb J, Stellwag B. Thermodynamics of zinc chemistry in PWRs: effects and alternatives to zinc[J]. Nucl. Energ-J. Br. Nucl., 1997, 36(5): 377
[57] Liu X H, Wu X Q, Han E-H.Influence of Zn injection on characteristics of oxide film on 304 stainless steel in borated and lithiated high temperature water[J]. Corros. Sci., 2011, 53(10): 3337
[58] Liu X H, Han E H, Wu X Q.Effect of Zn injection on established surface oxide films on 316 L stainless steel in borated and lithiated high temperature water[J]. Corros. Sci., 2012, 65: 136
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.
[4] 李清, 张德平, 李晓荣, 王薇, 孙宝壮, 艾池. TP110TS和P110钢在CO2注入井环空环境中应力腐蚀行为比较[J]. 中国腐蚀与防护学报, 2020, 40(4): 302-308.
[5] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[9] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[11] 廖家鹏,吴欣强. 核电材料高温高压水缺口疲劳性能研究现状与进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[12] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[13] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[14] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[15] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.