Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (2): 91-98    DOI: 10.11902/1005.4537.2014.083
  本期目录 | 过刊浏览 |
大气气溶胶腐蚀
张丹丹1,2, 赵春英2, 汪川1, 王彬彬1, 王振尧1()
1. 中国科学院金属研究所材料环境腐蚀中心 沈阳 110016
2. 沈阳理工大学环境与化学工程学院 沈阳 110159
Atmospheric Aerosols Corrosion
ZHANG Dandan1,2, ZHAO Chunying2, WANG Chuan1, WANG Binbin1, WANG Zhenyao1()
1. Environmental Corrosion Centre, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016, China
2. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
全文: PDF(458 KB)   HTML
摘要: 

简要介绍了气溶胶粒径及分布、气溶胶化学、气溶胶传输及气溶胶沉积等对金属大气腐蚀的影响,并围绕气溶胶污染物与金属表面的物理、化学和电化学作用及气溶胶中污染物成分等方面重点综述了其对金属腐蚀行为的影响和机理,同时阐述了气溶胶腐蚀的国内外研究现状,并对气溶胶腐蚀研究的发展进行了展望。

关键词 污染物气溶胶大气腐蚀    
Abstract

Atmospheric pollutant is one of the important factors influencing the atmospheric corrosion; pollutants mainly exist in the form of aerosols and affect the atmospheric corrosion of metals through aerosols deposition. In this paper, the factors which would influence the atmospheric corrosion of metals such as size and distribution, chemistry, transmission and deposition of aerosols were introduced. The physical, chemical and electrochemical interaction between aerosol and metal surface, and constituent of pollutants in aerosol were reviewed emphatically in order to summarize the influence of aerosols on metal corrosion and the mechanism of atmospheric aerosols corrosion. Present situation of studies on aerosols corrosion at home and abroad was discussed. Finally, the prospect of studies on aerosols corrosion was also predicted.

Key wordspollutant    aerosol    atmospheric corrosion
收稿日期: 2015-04-06     
ZTFLH:  TG172.4  
基金资助:国家自然科学基金重点项目 (51131007) 和国防技术基础项目 (H102011B002) 资助
作者简介: null

张丹丹,女,1988年生,硕士生

引用本文:

张丹丹, 赵春英, 汪川, 王彬彬, 王振尧. 大气气溶胶腐蚀[J]. 中国腐蚀与防护学报, 2015, 35(2): 91-98.
Dandan ZHANG, Chunying ZHAO, Chuan WANG, Binbin WANG, Zhenyao WANG. Atmospheric Aerosols Corrosion. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 91-98.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.083      或      https://www.jcscp.org/CN/Y2015/V35/I2/91

[1] Liu X C,An C Q. Metal Corrosion Science[M]. Beijing: National Defence Industry Press, 2002
[1] (刘秀晨,安成强. 金属腐蚀学[M]. 北京: 国防工业出版社, 2002)
[2] Wang Z Y. The review of atmospheric corrosion research on metal materials[J]. Total Corros. Control, 1995, 24(4): 1
[2] (王振尧. 金属材料大气腐蚀研究动态[J] .全面腐蚀控制, 1995, 24(4): 1)
[3] Liang C F. Atmospheric corrosion of steels in China[J]. J. Electrochem., 2001, 7(2): 215
[3] (梁彩凤. 钢在中国大陆的大气腐蚀研究[J]. 电化学, 2001, 7(2):215)
[4] Zhang A F. Influence factors of atmospheric corrosion for iron and steel[J]. Mater. Prot., 1989, 22(2): 15
[4] (张安富. 影响钢铁大气腐蚀的因素[J]. 材料保护, 1989, 22(2): 15)
[5] Liang C F, Hou W T. Prediction of atmospheric corrosion for steel[J]. J. Chin. Soc. Corros. Prot., 2006, 26(3): 129
[5] (梁彩凤, 侯文泰. 钢的大气腐蚀预测[J]. 中国腐蚀与防护学报,2006, 26(3): 129)
[6] Lau N T, Chan C K, Chan L I, et al. A microscopic study of the effects of particle size and composition of atmospheric aerosols on the corrosion of mild steel[J]. Corros. Sci., 2008, 50(10): 2927
[7] Wang Z Y, Ma T, Han W, et al. Corrosion behaviors of Al alloy LC4 in simulated polluted atmospheric environments[J]. J. Chin. Soc. Corros. Prot., 2005, 25(6): 321
[7] (王振尧, 马腾, 韩薇等. LC4铝合金在模拟污染大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2005, 25(6): 321)
[8] Lin C, Li X G, Wang G Y. Research progress on initial stage of atmospheric corrosion behavior of metals in pollutant atmospheries[J]. Corros. Sci. Prot. Technol., 2004, 16(2): 89
[8] (林翠, 李晓刚, 王光雍. 金属材料在污染大气环境中初期腐蚀行为和机理研究进展[J]. 腐蚀科学与防护技术, 2004, 16(2): 89)
[9] Rosa V, Diana D, Blanca M R. Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy[J]. Corros. Sci., 2006, 48(10): 2882
[10] Rosa V, Diana D, Rosales B M. Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 2. Pure copper[J]. Corros. Sci., 2007, 49(5): 2329
[11] Wang J H, Wei F I, Chang Y S, et al. The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres[J]. J. Mater. Chem., 1997, 47(1): 1
[12] Corvo F, Perez T, Dzib L R, et al. Outdoor-indoor corrosion of metals in tropical coastal atmospheres[J]. Corros. Sci., 2008, 50(1): 220
[13] Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under acidified marine droplets[J]. Corros. Sci., 2011, 53(4): 1604
[14] Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under fine size aerosols and droplets using inkjet printer deposition and optical profilometry quantification[J]. Corros. Sci., 2011, 53(11): 3534
[15] Arshadi M A, Johnson J B, Wood G C. The influence of an isobutane-SO2 pollutant system on the earlier stages of the atmospheric corrosion of metals[J]. Corros. Sci., 1983, 23(7): 763
[16] Wang B B, Wang Z Y, Cao G W, et al. Localized corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in Western China[J]. Acta Metall. Sin., 2014, 50(1): 49
[16] (王彬彬, 王振尧, 曹公望等. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为[J]. 金属学报, 2014, 50(1): 49)
[17] Cole I S, Ganther W D, Lau D. Field studies of surface cleaning and salt retention on openly exposed metal plates[J]. Corros. Eng. Sci. Technol., 2006, 41(4): 310
[18] Neufeld A K, Cole I S, Bond A M, et al. The initiation mechanism of corrosion of zinc by sodium chloride particle deposition[J]. Corros. Sci., 2002, 44(3): 555
[19] Cole I S, Ganther W D, Paterson D A, et al. Holistic model for atmospheric corrosion Part 2: Experimental measurement of deposition of marine salts in a number of long range studies[J]. Corros. Eng. Sci. Technol., 2003, 38(4): 259
[20] Cole I S, Ganther W D, Sinclair J D, et al. A study of the wetting of metal surfaces in order to understand the processes controlling atmospheric corrosion[J]. J. Electrochem. Soc., 2004, 151(12): B627
[21] Tsuru T, Tamiya K I, Nishikata A. Formation and growth of micro-droplets during the initial stage of atmospheric corrosion[J]. Electrochim. Acta, 2004, 49(17/18): 2709
[22] Mao J T, Zhang J H, Wang M H. Summary comment on research of atmospheric aerosol in China[J]. Acta Meteorol. Sin., 2002, 60(5): 625
[22] (毛节泰, 张军华, 王美华. 中国大气气溶胶研究综述[J]. 气象学报, 2002, 60(5): 625)
[23] Liu Q, Wang M X, Li J, et al. Present research on atmospheric aerosol and its trends[J]. Chin. Powder Sci. Technol., 1999, 5(3): 20
[23] (刘强, 王明星, 李晶等. 大气气溶胶研究现状和发展趋势[J]. 中国粉体技术, 1999, 5(3): 20)
[24] Zhang C C,Zhou W X. Atmospheric Aerosol Tutorial[M]. Beijing:China Meteorological Press, 1995
[24] (章澄昌,周文贤. 大气气溶胶教程[M]. 北京: 气象出版社, 1995)
[25] Seinfeld J, Pandis S. Atmospheric chemistry and physics: from air pollution to climate change [R]. New York: Wiley Interscience, 1997
[26] Schutz L, Kramer M. Rainwater composition over a rural area with special emphasis on the size distribution of insoluble of particulate matter[J]. J. Atmos. Chem., 1987, 5(2): 173
[27] Zhuang H, Chan C K, Fang M, et al. Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hongkong[J]. Atmos. Environ., 1999, 33(6): 843
[28] Pathak R K, Yao X, Lau A K, et al. Acidity and concentrations of ionic species of PM 2.5 in Hongkong[J]. Atmos. Environ., 2003,37(8): 1113
[29] Cole I S, Paterson D A, Ganther W D. Holistic model for atmospheric corrosion Part 1: Theoretical framework for production, transportation and deposition of marine salts[J]. Corros. Eng. Sci. Technol., 2003, 38(2): 129
[30] Cole I S, Azmat N S, Kantaet A, et al. What really controls the atmospheric corrosion of zinc? Effect of marine aerosols on atmospheric corrosion of zinc[J]. Int. Mater. Rev., 2009, 54(3): 117
[31] Cole I S, Muster T H, Azmat N S, et al. Multiscale modelling of the corrosion of metals under atmospheric corrosion[J]. Electrochim. Acta, 2011, 56(4): 1856
[32] Chameides W L, Stelson A W. Aqueous-phase chemical processes in deliquescent sea-salt aerosols-A mechanism that couples the atmospheric cycles of S and sea salt[J]. J. Geophys. Res., 1992, 97(18): 20565
[33] Cole I S, Paterson D A. Holistic model for atmospheric corrosion Part 5-Factors controlling deposition of salt aerosol on candles, plates and buildings[J]. Corros. Eng. Sci. Technol., 2004, 39(2): 125
[34] Cole I S, Ganther W D, Furman S A, et al. A mechanistic study of the effect of environmental conditions in China, South-East Asia and Australia on the corrosion of zinc and steel [A]. Proc. 200th Meeting of the Electrochemical Society, Inc., and 52nd Meeting of the International Society of Electrochemistry [C]. San Francisco: 2001
[35] Cole I S, Paterson D A. Modelling aerosol deposition rates on aircraft and implications for pollutant accumulation and corrosion[J].Corros. Eng. Sci. Technol., 2009, 44(5): 332
[36] Cole I S, Paterson D A. Mathematical models of dependence of surface temperatures of exposed metal plates on environmental parameters[J]. Corros. Eng. Sci. Technol., 2006, 41(1): 67
[37] Cole I S, Ganther W D. Experimental determination of duration of wetness on metal surfaces[J]. Corros. Sci. Technol., 2008, 43(2): 156
[38] Sandberg J, Wallinder I O, Leygraf C, et al. Corrosion-induced zinc runoff from construction materials in a marine environment[J]. J. Electrochem. Soc., 2007, 154(2): C120
[39] Cole I S, Ganther W D, Lau D. Field studies of surface cleaning and salt retention on openly exposed metal plates[J]. Corros. Eng. Sci. Technol., 2006, 41(4): 310
[40] Li S X, Hihara L H. Atmospheric corrosion initiation on steel from predeposited NaCl salt particles in high humidity atmospheres[J].Corros. Eng. Sci. Technol., 2010, 45(1): 49
[41] Cole I S, Muster T H, Furman S A, et al. Products formed during the interaction of seawater droplets with zinc surfaces: I. Results from 1-and 2.5-day exposures[J]. J. Electrochem. Soc., 2008, 155(5): C244
[42] Cole I S, Lau D, Paterson D A. Holistic model for atmospheric corrosion Part 6-from wet aerosol to salt deposit[J]. Corros. Eng. Sci. Technol., 2004, 39(3): 209
[43] Liu Y Y, Wang Y H, Zhong L, et al. Droplet under marine atmospheric corrosion for metal[J]. Corros. Eng. Sci. Technol., 2012, 24(1): 74
[43] (刘圆圆, 王燕华, 钟莲等. 液滴下金属海洋大气的腐蚀研究[J].腐蚀科学与防护技术, 2012, 24(1): 74)
[44] Muster T H, Bradbury A, Trinchi A, et al. The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape[J]. Electrochim. Acta, 2011, 56(4): 1866
[45] Venkatraman M S, Cole I S, Gunasegaram D R, et al. Modeling corrosion of a metal under an aerosol droplet[J]. Mater. Sci. Forum, 2010, 654-656(2): 1650
[46] Neufeld A K. Investigations using a Kelvin probe instrument and solid state electrochemical techniques: the initiation mechanism of corrosion of zinc and the solid-solid electrochemical transformation of CuTCNQ [D]. Melbourne: Monash University, 2003
[47] Chen Z Y, Persson D, Leygraf C. Initial NaCl-particle induced atmospheric corrosion of zinc-effect of CO2 and SO2[J]. Corros. Sci., 2008, 50(1): 111
[48] Nazaraov A, Thierry D. Rate-determining reactions of atmospheric corrosion[J]. Electrochim. Acta, 2004, 49: 2717
[49] Cole I S, Muster T H, Lau D, et al. Products formed during the interaction of seawater droplets with zinc surfaces II. Results from short exposure[J]. J. Electrochem. Soc., 2010, 157(6): C213
[50] Cole I S, Paterson D A. Possible effects of climate change on atmospheric corrosion in australia[J]. Corros. Eng. Sci. Technol., 2010, 45(1): 19
[51] Morcillo M, Chico B, Otero E, et al. Effect of marine aerosol on atmospheric corrosion[J]. Mater. Perform., 1999, 38(4): 72
[52] Li S X, Hihara L H. Aerosol salt particle deposition on metals exposed to marine environments: A study related to marine atmospheric corrosion[J]. J. Electrochem. Soc., 2014, 161(5): C268
[53] Tsutsumi Y, Nishikata A, Tsuru T. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solution[J]. Corros. Sci., 2007, 49(3): 1394
[54] Hastuty S, Nishikata A, Tsuru T. Pitting corrosion of type 430 stainless steel under chloride solution droplet[J]. Corros. Sci., 2010, 52(6): 2035
[55] Mi N, Ghahari M, Rayment T, et al. Use of inkjet printing to deposit magnesium chloride salt patterns for investigation of atmospheric corrosion of 304 stainless steel[J]. Corros. Sci., 2011, 53(10): 3114
[56] Cui F S, Presuel F J, Kelly R G. Computational modeling of cathodic limitations on localized corrosion of wetted SS316L at room temperature[J]. Corros. Sci., 2005, 47(12): 2987
[57] Lindstrom R, Svensson J E, Johansson L G. The influence of salt deposits on the atmospheric corrosion of zinc: The importantrole of the sodium ion[J]. J. Electrochem. Soc., 2002, 149(2): B57
[58] Wan Y, Yan C W, Qu Q, et al. Atmospheric corrosion of A3 steel with deposited ammonium sulfate[J]. Acta Phys.-Chim. Sin., 2002, 18(2): 156
[58] (万晔, 严川伟, 屈庆等. 硫酸铵颗粒沉积作用下A3钢的大气腐蚀行为[J]. 物理化学学报, 2002, 18(2): 156)
[59] Wan Y, Yan C W, Cao C N. Atmospheric corrosion of A3 steel deposited with different salts[J]. Acta Phys.-Chim. Sin., 2004, 20(6):659
[59] (万晔, 严川伟, 曹楚南. 可溶盐沉积对碳钢大气腐蚀行为的影响[J]. 物理化学学报, 2004, 20(6): 659)
[60] Veleva L, Farro W. Influence of seawater and its aerosols on copper patina composition[J]. Appl. Surf. Sci., 2012, 258(24): 10072
[61] Wang B B. Atmospheric corrosion of LY12 and LC4 aluminum alloy in salt lake environment in Western China [D]. Shenyang: University of Chinese Academy of Sciences, 2013
[61] (王彬彬. LY12和LC14铝合金在中国西部盐湖大气环境中腐蚀行为的研究 [D]. 沈阳: 中国科学院大学, 2013)
[62] Wang B B, Wang Z Y, Han W, et al. Atmospheric corrosion of aluminum alloy 2024-T3 exposed to salt lake environment in western China[J]. Corros. Sci., 2012, 59: 63
[1] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[5] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[6] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[7] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[8] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[9] 张鑫,戴念维,杨燕,张俊喜. 模拟工业环境下直流电场对金属Zn腐蚀机理的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[10] 孟晓波,蒋武斌,廖永力,李锐海,郑志军,高岩. 输电杆塔材料在模拟工业环境中的大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[11] 孙霜青,郑弃非,李春玲,王秀民,胡松青. 腐蚀产物对纯Al 8A06长期大气腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[12] 白子恒,黄运华,李晓刚,杨浪,董超芳,颜利丹,肖葵. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[13] 李东亮,付贵勤,朱苗勇. 湿热工业海洋大气中Si对桥梁钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[14] 刘艳洁,王振尧,柯伟. 纯Al在3种典型沿海,工业和乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.
[15] 陈启萌,张俊喜,原徐杰,戴念维. 外加交流电场对薄液膜中氧扩散的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 549-555.