Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (3): 205-212    DOI: 10.11902/1005.4537.2014.073
  研究报告 本期目录 | 过刊浏览 |
核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究
张志明1,彭青娇1,2,王俭秋1(),韩恩厚1,柯伟1
2. 中联重工科技发展股份有限公司 长沙 410007
Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃
Zhiming ZHANG1,Qingjiao PENG1,2,Jianqiu WANG1(),En-Hou HAN1,Wei KE1
1. Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110016, China
2. Zoomlion Heavy Industry Science &Technology Development Co., Ltd., Changsha 410007, China
全文: PDF(4866 KB)   HTML
摘要: 

利用U弯样品研究了国产压水堆核电站主管道用锻造态316L不锈钢在330 ℃ NaOH溶液中的应力腐蚀开裂行为。结果表明,浸泡720 h后在样品表面观察到明显的应力腐蚀裂纹,裂纹扩展完全穿透样品厚度。样品表面生长的氧化膜内层富Fe,中间层富Ni,外层是富含Ni和Fe的分散的颗粒状氧化物,氧化膜缺乏保护性。EBSD和断口观察发现样品主要是沿晶型开裂,断口主要体现冰糖状花样,局部还分布有河流花样和准解理台阶。在应力的作用下,晶界富含Fe和Ni的氧化物的脆性断裂导致应力腐蚀裂纹的扩展。316L不锈钢的脆性断裂机制属于阳极溶解型-应力使晶界氧化膜破裂机制。

关键词 316L不锈钢高温高压NaOH应力腐蚀开裂    
Abstract

The stress corrosion cracking behavior of forged 316L stainless steel used for the main pipe of pressured water reactors was investigated in sodium hydroxide solution at 330 oC using U-bent samples. The results showed that, after immersion for 720 h, obvious stress corrosion cracks were found on the sample surfaces. The formed surface oxide film consisted of an inner layer rich in Fe, a middle layer rich in Ni and an outmost layer of oxide particles rich in Fe and Ni, which could not protect the base metal from further corrosion. EBSD and fracture morphology observation showed that the steel suffered mainly from intergranular cracking and the fractured surface exhibitedmainly rock candy-like patternwith partly river-like pattern and quasi-cleavage steps. The cracks were propagated by the brittle fracture of grain boundary oxides rich in Fe and Ni under the external stress. The stress corrosion cracking mechanism was ascribed to anodic dissolution-brittle fracture of grain boundary oxides by the applied stress.

Key words316L stainless steel    high temperature and high pressure    NaOH    stress corrosion cracking
    
基金资助:国家重点基础研究发展计划项目 (2011CB610502),国家科技重大专项项目(2011ZX06004-002和2011ZX06004-009)和国家自然科学基金项目 (51301183) 资助

引用本文:

张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
Zhiming ZHANG, Qingjiao PENG, Jianqiu WANG, En-Hou HAN, Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 205-212.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.073      或      https://www.jcscp.org/CN/Y2015/V35/I3/205

图1  316L不锈钢主管道及U弯样品取样位置示意图
图2  316L不锈钢3个方向金相组织
图3  应力腐蚀实验U型弯曲试样尺寸
图4  316L不锈钢U型弯曲样品浸泡后表面形貌的SEM像
图5  316L不锈钢U弯样品表面氧化膜截面形貌及化学组成分析
图6  316L不锈钢U型弯曲样品浸泡后截面的裂纹形貌
图7  316L不锈钢U型弯曲样品裂纹与晶界分析
图8  在高温碱性溶液浸泡后316L不锈钢U型弯曲样品断口形貌观察
图9  316L不锈钢U型弯曲样品裂纹路径腐蚀产物分析
[1] Burke M A. Materials selection and validation for light water reactor electricity generating capacity sustainability [A]. 5th IMR Symposium on Materials Science and Engineering: Materials and Reliability in Nuclear Power Plants [C]. Shenyang: 2009
[2] Gorman J A, Hunt E S, Mcllree A R. Primary side IGSCC of PWR steam generator tubing causes and remedial measures [A]. Proceedings of 2nd International Symposium on Environmental Degradation of Material in Nuclear Power Systems-water Reactors [C]. Houston:1985
[3] Paul P S.Investigation of Alloy 600 in SCC in high temperature water [A]. Proc. of 1985 Workshop on Primary Side SCC of PWR Steam Generator Tubing [C]. Palo Alto: 1985
[4] Totuska N, Lumarkska E, Gragnolino G, et al. Effect of hydrogen on the intergranular stress corrosion cracking of alloy 600 in high temperature aqueous environment[J]. Corrosion, 1987, 43(8): 505
[5] Hanna G L, Troiano A R, Streigerwald E A. A mechanism for the embrittlement of high-strength steels by aqueous environments[J]. Trans. ASM, 1964, 57: 658
[6] Clarke W L, Gordon G M. Investigation of stress corrosion cracking susceptibility of Fe-Ni-Cr alloys in nuclear reactors water environments[J]. Corrosion, 1973, 29(1): 1
[7] Crowe D C. Stress corrosion cracking of 316 stainless steel in caustic solution [D]. Vancouver: The University of British Columbia, 1982
[8] Zhang J Z, Wang Y C, Chen X R, et al. Scientific research group of caustic embrittlement: Study of caustic embrittlement mechanism of low carbon steel[J]. J. Zhejiang Univ. Technol., 1983, 11(1): 64 (张九渊, 王裕昌, 陈孝荣等. 碱脆科研组低碳钢碱脆机理的研究[J]. 浙江工学院学报, 1983, 11(1): 64)
[9] Zhu Z Y, Wei X Y. Corrosion of different materials in high temperature caustic solution[J]. Corros. Sci. Prot. Technol., 1991, 3(1): 1 (朱自勇, 魏翔云. 不同材料在高温碱液中的腐蚀行为[J]. 腐蚀科学与防护技术, 1991, 3(1): 1)
[10] Liu S E,Zhu Z Y,Ke W. Stress corrosion cracking behavior of pressure vessel steels in caustic aluminate solutions at high temperatures [J]. Corros. Sci. Prot. Technol.., 1992, 4(4): 283 (刘素娥, 朱自勇, 柯伟. 氧化铝溶出过程压力容器用钢高温碱脆研究[J]. 腐蚀科学与防护技术, 1992, 4(4): 283)
[11] Liu S E, Zhu Z Y, Ke W. Effect of NaOH concentration and AlO2- species on caustic stress corrosion cracking of a low alloy steel at 260 ℃[J]. Acta Metall. Sin., 1997, 33(2): 143 (刘素娥, 朱自勇, 柯伟.NaOH浓度和AlO2-对低合金钢高温碱脆的影响[J]. 金属学报, 1997, 33(2): 143)
[12] Li F. Study on stress corrosion cracking of 304L stainless steel in caustic solution at high temperature [D]. Nanjing: Nanjing University of Technology, 2006 (李峰. 304L在高温碱性溶液中应力腐蚀开裂的研究 [D]. 南京:南京工业大学, 2006)
[13] Zhang M. 35Mn2 steel's mechanism study of caustic brittlement [D]. Daqing: Daqing Petroleum Institure, 2008 (张梅. 35Mn2钢碱脆机理研究 [D]. 大庆: 大庆石油学院, 2008)
[14] Peng Q J. Study of microstructure and corrosion resistance of three homemade forged nuclear power main pipe materials [D]. Shenyang: Institute of Metal research, Chinese Academy of Sciences, 2011 (彭青娇. 三种国产锻造态核电主管道材料显微组织与耐腐蚀性差异的研究 [D]. 沈阳: 中国科学院金属研究所, 2011)
[15] Yamazaki S,Lu Z P,Ito Y,et al. The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water [J]. Corros. Sci.., 2008, 50(3): 835
[16] Kuang W J, Wu X Q, Han E-H, et al. Effect of nickel ion from autoclave material on oxidation behavior of 304 stainless steel in oxygenated high temperature water[J]. Corros. Sci., 2011, 53(3): 1107
[17] Staehle R W,Gorman J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors Part 1: [J]. Corrosion, 2003, 59(11): 931
[18] Zhang Z M, Wang J Q, Han E-H, et al. Influence of dissolved oxygen on oxide films of Alloy 690TT with different surface status in simulated primary water[J]. Corros. Sci., 2011, 53(11): 3623
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[7] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[8] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[9] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[10] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[11] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[12] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[13] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[14] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[15] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.