Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (2): 163-168    DOI: 10.11902/1005.4537.2014.050
  本期目录 | 过刊浏览 |
流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响
赵桐1, 赵景茂1,2(), 姜瑞景1,2
1. 北京化工大学材料科学与工程学院 北京 100029
2. 北京化工大学 材料电化学过程与技术北京市重点实验室 北京 100029
Effect of Flow Velocity and Carbon Chain Length on Corrosion Inhibition Performance of Imidazoline Derivates in High Pressure CO2 Environment
ZHAO Tong1, ZHAO Jingmao1,2(), JIANG Ruijing1,2
1. College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2. Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(5043 KB)   HTML
摘要: 

合成了5种碳链长度不同的咪唑啉衍生物以及两种碳链中带有双键的咪唑啉衍生物。通过动态失重、SEM、AFM和接触角测定等分析表征手段,研究了它们在碳钢表面上的吸附能力与疏水能力以及在高压CO2环境中在3种流速下对碳钢腐蚀的缓蚀性能。结果表明,咪唑啉碳数为21时疏水效果最好,其浓度为50,100和200 mg/L时,接触角分别为80.5°,87.8°和96.2°。通过测量力曲线,同样发现随碳链的增长,其粘附力逐渐增大,当碳数为21时,粘附力达到最大。高压釜动态失重实验表明,缓蚀剂的缓蚀性能与碳链的长度以及溶液流速有关。流速为0.3和0.6 m/s时,碳数为17时缓蚀效果最好;流速为5.5 m/s时,碳链越长,缓蚀效果越好。同样条件下,碳链中带有双键的咪唑啉的缓蚀效果总是优于碳链中没有双键的咪唑啉的缓蚀效果。

关键词 CO2腐蚀缓蚀剂流速咪唑啉衍生物碳链长度    
Abstract

Five imidazoline derivates with different carbon chain length and two imidazoline derivates with double bond in carbon chain were synthesized. Their inhibition performance, adsorption capacity and hydrophobicity were studied in high CO2 pressured solution by means of dynamic mass loss method, SEM, AFM, and contact angle measurement. By contact angle measurement, it was found that the hydrophobic performance of imidazoline derivate with 21 carbon chain length was the best, and the contact angle was 80.5°, 87.8° and 96.2° respectively corresponding to its concentration of 50, 100 and 200 mg/L. By the AFM force curves, it was also found that the longer the carbon chain, the larger the adhesion force. When the chain length was 21, the adhesion reached the highest. The dynamic weight loss experiment showed that the inhibition performance of the imidazoline derivates was related to both the chain length and the flow velocity of the solution. When the flow rate was 0.3 and 0.6 m/s, the derivate with 17 carbons in carbon chain was the best and when the flow rate was 5.5 m/s, the longer the carbon chain of imidazoline, the better the inhibition performance. The inhibition performance of imidazoline with double bonds in carbon chain was always better than the one without double bonds under the same condition.

Key wordsCO2 corrosion    corrosion inhibitor    flow velocity    imidazoline derivate    carbon chain length
收稿日期: 2014-05-19     
ZTFLH:  TG174.42  
基金资助:国家自然科学基金项目 (51171013) 资助
作者简介: null

赵桐,男,1989年生,硕士生

引用本文:

赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
Tong ZHAO, Jingmao ZHAO, Ruijing JIANG. Effect of Flow Velocity and Carbon Chain Length on Corrosion Inhibition Performance of Imidazoline Derivates in High Pressure CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 163-168.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.050      或      https://www.jcscp.org/CN/Y2015/V35/I2/163

Corrosion inhibitor Average values of contact angle / deg
50 mg/L 100 mg/L 200 mg/L
Blank 21.3 21.3 21.3
IM-5 27.5 38.6 49.0
IM-9 35.8 59.8 73.0
IM-13 50.0 69.3 82.3
IM-17 66.9 79.2 90.3
IM-21 80.5 87.8 96.2
IM-17D 66.3 76.9 80.1
IM-21D 80.1 87.5 93.2
表1  吸附了不同碳链链长的咪唑啉衍生物后N80碳钢表面的接触角平均值
图1  吸附不同链长咪唑啉衍生物后的碳钢试片表面的力曲线
图2  加入不同疏水基的咪唑啉衍生物后碳钢在3种流速下的腐蚀速率
图3  3种流速下不同链长的咪唑啉衍生物的缓蚀率与接触角及缓蚀率与粘附力曲线
图4  咪唑啉衍生物碳链中的双键对碳钢腐蚀速率的影响
图5  流速为0.3 m/s条件下分别加入5种缓蚀剂后碳钢表面的腐蚀形貌
图6  流速为0.6 m/s条件下分别加入5种缓蚀剂后碳钢表面的腐蚀形貌
图7  流速为5.5 m/s条件下分别加入5种缓蚀剂后碳钢表面的腐蚀形貌
[1] Nesic S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review[J]. Corros. Sci., 2007, 49: 4308
[2] Zhao G X, Yan M L, Chen C F, et al. Studies on influence factors of CO2 corrosion rate[J]. Oil Field Equip., 2001, 30: 72
[2] (赵国仙, 严密林, 陈长风等. 影响碳钢CO2腐蚀速率因素的研究[J]. 石油矿场机械, 2001, 30: 72)
[3] Sun L, Li C J, Peng S B, et al. Research of the effceting factors of CO2 corrosion[J]. Pipeline Tech. Equip., 2008, 6: 35
[3] (孙丽, 李长俊, 彭善碧等. CO2腐蚀影响因素研究[J]. 管道技术与设备, 2008, 6: 35)
[4] Suzuki K, Kouno T, Eiji S, et al. The study of inhibitor for sour gas service[J]. Corrosion, 1982, 38(7): 384
[5] Ramachandran S, Tsai B L, Blanco M, et al. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines[J]. Langmuir, 1996, 12(26): 6419
[6] Jovancicevic V, Ramachandran S, Prince P. Inhibition of carbon dioxide corrosion of mild steel by imidazolines and their precursors[J]. Corrosion, 1999, 55(5): 449
[7] Sun M Q, Ge J J, Zhang G C, et al. Relationship between molecular structure of imidazoline and its corrosion inhibition performance in salty solution with saturated CO2[J]. Petrochem. Technol., 2005, 34(12): 1177
[7] (孙铭勤, 葛际江, 张贵才等. 饱和CO2盐水中咪唑啉分子结构与其缓蚀性能的关系[J]. 石油化工, 2005, 34(12): 1177)
[8] Yang H Y, Chen J J, Cao C N, et al. Study on corrosion and inhibition mechanism in H2S aqueous solutions VI: The relationship between molecular structure of imidazoline derivatives and inhibition performance in H2S solutions[J]. J. Chin. Soc. Corros. Prot., 2002, 22(3): 148
[8] (杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究VI: H2S溶液中咪唑啉衍生物分子结构与其缓蚀性能的关系[J]. 中国腐蚀与防护学报, 2002, 22(3): 148)
[9] Liu X, Zheng Y G. The effect of hydrophobic group on the inhibition behavior of imidazoline for CO2 corrosion of N80 in 3%NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2009, 29(5): 333
[9] (刘瑕, 郑玉贵. 咪唑啉型缓蚀剂中疏水基团对N80钢在CO2饱和的3%NaCl溶液中的缓蚀性能影响[J]. 中国腐蚀与防护学报, 2009, 29(5): 333)
[10] Zhang J, Liu J X, Yu W Z, et al. Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline[J]. Corros. Sci., 2010, 52(6): 2059
[11] Bommersbach P, Alemany-Dumont C, Millet J P, et al. Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods[J]. Electrochim. Acta, 2005, 51(6): 1076
[12] Ochoa N, Moran F, Pébère N, et al. Influence of flow on the corrosion inhibition of carbon steel by fatty amines in association with phosphonocarboxylic acid salts[J]. Corros. Sci., 2005, 47(3): 593
[13] Srisuwan N, Ochoa N, Pébère N, et al. Variation of carbon steel corrosion rate with flow conditions in the presence of an inhibitive formulation[J]. Corros. Sci., 2008, 50(5): 1245
[14] Edwards A, Osborne C, Webster S, et al. Mechanistic studies of the corrosion inhibitor oleic imidazoline[J]. Corros. Sci., 1993, 36(2): 315
[15] Ortega-Toledoa D M, Gonzalez-Rodriguezb J G, Casales M, et al. CO2 corrosion inhibition of X-120 pipeline steel by a modified imidazoline under flow conditions[J]. Corros. Sci., 2011, 53(11):3780
[16] Jiang X, Zheng Y G, Ke W. Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3%NaCl solution[J]. Corros. Sci., 2005, 47(11): 2636
[17] Zhang Z. Development of supramolecular corrosion inhibitor and its protective effect on condensate system [D]. Beijing: Beijing University of Chemical Technology, 2013
[17] (张展. 超分子缓蚀剂对凝结水系统的保护 [D]. 北京: 北京化工大学, 2013)
[18] Qu J E, Guo X P, Huang J Y, et al. Study on adsorption behavior of inhibitors by electrochemical metheods and AFM force curves[J]. J. Instrum. Anal., 2007, 26(1): 110
[18] (屈钧娥, 郭兴蓬, 黄金营等. 缓蚀剂吸附行为的电化学及AFM力曲线研究[J]. 分析测试学报, 2007, 26(1): 110)
[1] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[2] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[3] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[4] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[5] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[6] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[7] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[8] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[10] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[11] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[12] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[13] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[14] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[15] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.