Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (2): 137-143    DOI: 10.11902/1005.4537.2014.031
  本期目录 | 过刊浏览 |
成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响
陈宇, 陈旭(), 刘彤, 王冠夫, 王彦亮
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Effect of Potential on Electrochemical Corrosion Behavior of 316L Stainless Steel in Borate Buffer Solution
CHEN Yu, CHEN Xu(), LIU Tong, WANG Guanfu, WANG Yanliang
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(1640 KB)   HTML
摘要: 

采用动电位极化和电化学阻抗方法研究了316L不锈钢在硼酸溶液中钝化膜的电化学性能,并通过Mott-Schottky曲线考察了不同成膜电位下钝化膜的半导体性质。结果表明,316L不锈钢在-0.1~0.5 V发生了明显的钝化现象,在0.3 V成膜电位下形成的钝化膜更加致密和稳定。Mott-Schottky曲线结果表明,成膜电位对于316L不锈钢钝化膜的半导体特征性质没有根本影响,在钝化区间内钝化膜呈p型半导体特征,在0.3 V时受主密度最小。

关键词 316L不锈钢成膜电位动电位极化电化学阻抗Mott-Schottky曲线    
Abstract

The electrochemical corrosion behavior of passive film of 316L stainless steel in borate buffer solution was investigated by dynamic polarization and electrochemical impedance spectroscopy (EIS) technology. The semiconducting character of the passive film was studied by Mott-Schottky curve. The results showed that a much compact and stable passive film could form on 316L stainless steel surface by potentials in a range from -0.1 to 0.5 V; the applied potential had little effect on the semiconducting character of the formed passive film. The passive films formed by potentials in the above range exhibited character of p-type semiconductor and among them the one formed by 0.3 V had the lowest acceptor density NA.

Key words316L stainless steel    film forming potential    dynamic polarization    EIS    Mott-Schottky
收稿日期: 2014-04-22     
ZTFLH:  TG174  
基金资助:国家自然科学基金项目(51201009)和辽宁省自然科学基金项目(2013020078)资助
作者简介: null

陈宇,男,1986年生,硕士生

引用本文:

陈宇, 陈旭, 刘彤, 王冠夫, 王彦亮. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
Yu CHEN, Xu CHEN, Tong LIU, Guanfu WANG, Yanliang WANG. Effect of Potential on Electrochemical Corrosion Behavior of 316L Stainless Steel in Borate Buffer Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 137-143.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.031      或      https://www.jcscp.org/CN/Y2015/V35/I2/137

图1  316L不锈钢侵蚀后不同放大倍数下的金相组织
图2  316L不锈钢在硼酸溶液中的极化曲线
图3  316L不锈钢在硼酸溶液中不同成膜电位下的极化曲线
图4  316L不锈钢在硼酸溶液的Nyquist图
图5  316L不锈钢在硼酸溶液中的Bode图
图6  等效模拟电路
Potential / V Rs / Ωcm2 Q1 / Fcm2 n Rp / Ωcm2p L / H Q2 / Fcm2 n Rt / Ωcm2
-0.1 9.323×104 7.895×10-10 --- 3294 5.921×10-3 7.413×10-5 0.813 4.192×104
0.1 6190 4.609×10-8 --- 2005 5.111×10-3 8.582×10-5 0.801 5.371×104
0.3 8510 7.794×10-10 0.7 3664 1.129×10-2 8.983×10-5 0.748 8.669×104
0.5 1019 1.071×10-9 --- 2655 5.309×10-3 10.220×10-5 0.795 2.992×104
表1  EIS等效电路拟合结果
图7  316L不锈钢在不同成膜电位下钝化膜的Mott-Schottky曲线
图8  成膜电位与受主密度和平带电位的关系
图9  空间电荷层厚度与成膜电位的关系曲线
[1] Zhang H, Li C T, Song L J, et al. Effects of pH on electrochemical properties of 316L stainless steel[J]. Corros. Prot., 2013, 34(7): 593
[1] (张晖, 李成涛, 宋利君等. pH对316L不锈钢电化学性能的影响[J]. 腐蚀与防护,2013, 34(7): 593)
[2] Yang W. Development of nuclear power industry and its demands on corrosion protection technology[J]. Corros. Prot., 1997, 18(3): 99
[2] (杨武. 核电工业的发展及其对腐蚀防护技术的需求[J]. 腐蚀与防护, 1997, 18(3): 99)
[3] Han E-H. Research trends on micro and nano-scale materials degradation in nuclear power plant[J]. Acta Metall. Sin., 2011, 47(7): 769
[3] (韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究[J]. 金属学报, 2011, 47(7): 769)
[4] Dacunhabelo M, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR enviroment[J]. Corros. Sci., 1998, 40(2):447
[5] Uemura M, Yamamoto T, Fushimi K. Depth profile analysis of thin passive films on stainless steel by glow dischare optical emission spectroscopy[J]. Corros. Sci., 2009, 51(6): 1554
[6] Li W S, Chen H Y, Yuan Z Z, et al. Electrochemical investigations on pitting susceptibility of iron-based Al[J]. Elctrochemistry, 2004, 10(4): 397
[6] (李伟善, 陈红雨, 袁中直等. Fe基合金钝化膜点蚀敏感性的电化学研究[J]. 电化学, 2004, 10(4): 397)
[7] Cheng X Q, Li X G, Du C W, et al. Self-passivating behavior of 316L stainless steel in high-temperature acetic acid solution[J]. J. Univ. Sci. Technol. Beijing, 2006, 28(9): 840
[7] (程学群, 李晓刚, 杜翠薇等. 316L不锈钢在含氯高温醋酸溶液中的自钝化行为[J]. 北京科技大学学报, 2006, 28(9): 840)
[8] Li C T, Li X G, Cheng X Q, et al. Electrochemical properties of 316L stainless steel and 690 alloy in NaOH solution[J]. Corros. Prot., 2011, 32(5): 252
[8] (李成涛, 李晓刚, 程学群等. 316L不锈钢、690合金在氢氧化钠溶液中的电化学性能[J]. 腐蚀与防护, 2011, 32(5): 252)
[9] Yu J G, Luo J L, Zhang C S, et al. Photoelectrochemical study of hydrogen-loaded passive film[J]. J. Electrochem. Soc., 2003, 150: B405
[10] Meng G Z, Sun F L, Shao Y W, et al. Influence of nano-scale twins structure on passive film formed on-nickel[J]. Electrochim. Acta,2010, 55(4): 2575
[11] Goodlet G, Faty S, Cardose S, et al. The electronic properties of spluttered chromium and iron oxide films[J]. Corros. Sci., 2004, 46(6): 1479
[12] Cheng X Q, Li X G, Du C W, et al. Electrochemical properties of passivation film formed on 316L stainless steel in acetic acid[J]. J. Univ. Sci. Technol. Beijing, 2007, 29(9): 911
[12] (程学群, 李晓刚, 杜翠薇等. 316L不锈钢在醋酸溶液中的钝化膜电化学性质[J]. 北京科技大学学报, 2007, 29(9): 911)
[13] Xu C C, Xu R F, Ouyang W Z, et al. EIS study of the effect of deformation induced α' martensite on pitting sensibility of 1Cr18Ni9Ti stainless steel in acidic NaCl solution[J]. Corros. Sci. Prot. Technol., 1997, 19(2): 95
[13] (许淳淳, 徐瑞芬, 欧阳维真等. 用交流阻抗法研究形变诱发马氏体相变的1Cr18Ni9Ti不锈钢在酸性NaCl溶液中的孔蚀敏感性[J]. 腐蚀科学与防护技术, 1997, 19(2): 95)
[14] Hamadou L, Kadri A, Benbrahim N. Characterisation of passive films formed on low carbon steel in borate buffer solution (pH 9.2) by electrochemical impedance spectroscopy[J]. Appl. Surf. Sci., 2005, 252(5): 1510
[15] Sikora J, Sikora E, Macdonald D D. The eleetronic structure of the passive film on tungsten[J]. Electrochim. Acta, 2000, 45(14): 1875
[16] Paola A D. Semiconductring properties of passive films on stainless steels[J]. Electrochim. Acta, 2002, 34(2): 203
[17] Jia Z J, Li X G, Liang P, et al. Electrochemical characterization of passive film formed under different potential condition on X70 pipeline steel in NaHCO3 solution[J]. J. Chin. Soc. Corros. Prot., 2010,30(3): 241
[17] (贾志军, 李晓刚, 梁平等. 成膜电位对X70管线钢在NaHCO3溶液中钝化膜电化学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(3): 241)
[18] Morrison S R. Electrochemistry at Semicnductor and Oxidized Metal Electrodes [M]. New York: Plenum Press, 1980
[19] Feng Z C, Cheng X, Dong C, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy[J]. Corros. Sci., 2010, 52(11): 3646
[20] Zhao J M, Gu F, Zhao X H, et al. Semiconductor properties of anodic oxide film formed on Aluminum.[J]. Acta Phys.-Chim. Sin., 2008, 24(1): 147
[20] (赵景茂, 谷丰, 赵旭辉等. 铝阳极氧化膜的半导体特性[J]. 物理化学学报, 2008, 24(1): 147)
[1] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[3] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[4] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[5] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[8] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[10] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[11] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[12] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[13] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[15] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.