Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (3): 279-286    DOI: 10.11902/1005.4537.2014.024
  研究报告 本期目录 | 过刊浏览 |
Yb对2519A铝合金抗剥落腐蚀性能的影响
暨波1,张新明1(),张卓夫2,叶凌英1,李文健3
2. 湖南河豚机电设备有限公司 长沙 410100
3. 中国核工业二三建设有限公司 阳江 529941
Influence of Yb Addition on Resistance to Exfoliation Corrosion of Aluminum Alloy 2519A
Bo JI1,Xinming ZHANG1(),Zhuofu ZHANG2,Lingying YE1,Wenjian LI3
1. School of Materials Science and Engineering, Central South University, Changsha 410083,China
2. Hunan Fugu Mechanical and Electrical Equipment Co., Ltd., Changsha 410100, China
3. China Nuclear Industry 23 Construction Co., Ltd., Yangjiang 529941, China
全文: PDF(8499 KB)   HTML
摘要: 

采用铸锭冶金法制备了不同Yb含量的2519A铝合金试样,通过硬度测试、力学性能测试、金相显微镜、扫描电镜与透射电镜等分析方法研究了稀土Yb对2519A铝合金抗剥落腐蚀性能的影响。结果表明:在2519A铝合金中添加0.2%Yb (质量分数) 时,Yb与Al,Cu,Fe和Mn形成稀土相,合金内粗大AlCu相和AlCuFeMn相数量减少,含Yb第二相粒子化学活泼性低于AlCu相和AlCuFeMn相。适量的Yb能细化合金的时效强化相,使其析出密度增加,阻止θ (Al2Cu) 相在晶界上连续析出,减小晶界无沉淀析出带 (PFZ) 宽度,使晶界析出相变成非连续分布,从而改善了合金的剥落腐蚀抗力。当Yb含量进一步增加时,合金力学性能及抗剥蚀性能下降。

关键词 2519A铝合金Yb显微组织剥落腐蚀    
Abstract

Influence of Yb additions on resistance to exfoliation corrosion of aluminum alloy 2519A was investigated in EXCO solution at ambient temperature, while the alloys were characterized by means of hardness test, tensile test, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that, with the addition of 0.2%Yb, the amount of the coarse phases AlCu phase and AlCuFeMn decreased in the alloy due to the formation of phases of Yb compounds with Al, Cu, Fe and Mn, of which the chemical activity was inferior to that of the phases AlCu and AlCuFeMn. Meantime, the Yb addition could also refine the θ ′ phase and increase its area fraction, as a result, the continuous precipitation of θ (Al2Cu) phase at grain boundaries could be prevented, and the width of the precipitation free zone (PFZ) was shrunken at grain boundaries,therefore the resistance to exfoliation corrosion of the alloy could be improved. However an excessive addition of Yb might deteriorate the mechanical properties and the resistance to exfoliation corrosion of the alloys.

Key wordsaluminum alloy 2519A    Yb    microstructure    exfoliation corrosion
    

引用本文:

暨波,张新明,张卓夫,叶凌英,李文健. Yb对2519A铝合金抗剥落腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 279-286.
Bo JI, Xinming ZHANG, Zhuofu ZHANG, Lingying YE, Wenjian LI. Influence of Yb Addition on Resistance to Exfoliation Corrosion of Aluminum Alloy 2519A. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 279-286.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.024      或      https://www.jcscp.org/CN/Y2015/V35/I3/279

Alloy No. Cu Mg Mn Zr Ti Yb Al
1 5.8 0.2 0.3 0.2 0.05 0 Bal.
2 5.8 0.2 0.3 0.2 0.05 0.2 Bal.
3 5.8 0.2 0.3 0.2 0.05 0.4 Bal.
表1  实验合金的名义成分
图1  不同Yb含量的2519A铝合金在165 ℃下的时间-硬度曲线
图2  不同Yb含量合金的剥落腐蚀形貌
Mass fraction of Yb / % Ultimate tensile strength σb / MPa Yield strength σ0.2 / MPa Elongation δ / %
Blank 483.4 437.6 13
0.2 509.3 460.3 14
0.4 467.9 425.9 12
表2  不同Yb含量的2519A铝合金在165 ℃时效后的室温力学性能
Time/h Alloy 1 Alloy 2 Alloy 3
6 EA- P EA
12 EB- EA+ EB
24 EB+ EB EC
48 EC- EB+ EC+
96 ED EC ED
表3  浸泡不同时间后合金的腐蚀等级评定
图3  不同Yb含量合金在腐蚀液中浸泡96 h后横截面剥蚀金相形貌及剥蚀产物情况
图4  不同Yb含量合金峰时效后的SEM像
图5  不同Yb含量合金内典型第二相粒子EDS分析
图6  不同Yb含量合金峰时效后在EXCO溶液中浸泡30 min后表面腐蚀形貌
Position in Fig.5 Al Cu Yb Fe Mn
A 63.08 31.13 5.78 --- ---
B 73.37 18.72 6.21 --- 1.70
C 74.07 18.88 --- 5.30 1.57
D 63.71 12.89 2.55 0.37 0.17
表4  图5中典型第二相粒子EDS分析
Position in Fig.7 Al Cu Yb Fe Mn O
A 62.21 33.45 --- 3.46 0.88 ---
B 67.25 25.77 --- --- --- 6.97
C 72.54 23.23 2.91 0.22 1.10 ---
D 38.20 56.39 0.55 3.77 1.09 ---
E 81.47 18.53 --- --- --- ---
F 59.18 --- 0.47 3.80 1.38 ---
表5  图7中典型第二相粒子EDS分析
图7  不同Yb含量合金峰时效后在EXCO溶液中浸泡30 min后第二相粒子的EDS分析
图8  不同Yb含量合金在165 ℃峰时效后晶内和晶界的TEM像
[1] Carter H B, Saxena A. Transient crack growth behavior in aluminum alloys C415-T8 and 2519-T87[J]. Eng. Fracture Mech., 1999, 62(1): 1
[2] Devincent S M, Devletian J H, Gedeon S A. Weld properties of the newly developed 2519-T87 aluminum armor alloy[J]. Weld. J., 1988, 3(7): 33
[3] Dymek S, Dollar M. TEM investigation of age-hardenable Al 2519 alloy subjected to stress corrosion cracking tests[J]. Mater. Chem. Phys., 2003, 81(2/3): 286
[4] Fisher J, James J. Aluminum alloy 2519 in military vehicles[J]. Adv. Mater. Process., 2002, 160(9): 43
[5] Wang W T. Effect of Yb and Ce additions on microstructures and mechanical properties of aluminium alloy 2519 sheet [D]. Changsha: Central South University, 2010 (王文韬. 镱、铈对2519A铝合金板材组织与力学性能的影响 [D]. 长沙: 中南大学, 2010)
[6] Fang H C, Chen K H, Zhang Z, et al. Effect of Yb additions on microstructures and mechanical properties of 7A60 aluminium alloy[J]. Trans. Nonferrous Met. Soc. China, 2008, 18(1): 28
[7] Wu Z G, Song M, He Y G. Effects of Yb additions on microstructure and tensile properties of Al-Mg alloys[J]. Rare Met., 2009, 33(5): 616 (吴正刚, 宋旼, 贺跃刚. Yb对铝-镁合金显微组织和力学性能的影响[J]. 稀有金属, 2009, 33(5): 616)
[8] Keddam M, Kuntz C. Exfoliation corrosion of aluminum alloys examined by electrode impedance[J]. Electrochim. Acta, 1997, 42(1): 87
[9] Li J F, Cao F H. Reviewon exfoliation susceptibility of aluminumalloys and quantitative measurement method[J]. J. Chin. Soc. Corros. Prot., 2004, 24(1): 55 (李劲风, 曹发和. 铝合金剥蚀敏感性及其定量研究方法[J]. 中国腐蚀与防护学报, 2004, 24(1): 55)
[10] Zuo S Z, Li D. Review on the exfoliation corrosion of aluminum alloys[J]. Mater. Prot., 1994, 27(12): 23 (左尚志, 李荻. 国内外铝合金剥蚀研究的现状[J]. 材料保护, 1994, 27(12): 23)
[11] Su J X, Zhang Z. Review on the intergranular corrosion and exfoliation corrosion of aluminum alloys[J]. J. Chin. Soc. Corros. Prot., 2005, 25(3): 187 (苏景新, 张昭. 铝合金的晶间腐蚀和剥蚀[J]. 中国腐蚀与防护学报, 2005, 25(3): 187)
[12] Robinson M J, Jackson N C. The influence of grain structure and intergranular corrosion rate on exfoliation and stress corrosion cracking of high strength Al-Cu-Mg alloys[J]. Corros. Sci., 1999, 41(5): 1013
[13] Liu Y, Zhang X M, Zhou G X. Effect of predeformation amount on exfoliation corrosion resistance of 2519 aluminium alloy[J]. J. Mater. Therm. Treat., 2006, 27(6): 61 (刘瑛, 张新明, 周古昕等. 预变形量对2519铝合金抗剥落腐蚀性能的影响[J]. 材料热处理学报, 2006, 27(6): 61)
[14] Zhang X M, Ji B, Ye L Y. Influence of Yb addition on intergranular corrosion resistance of aluminium alloy 2519A[J]. J. Cent. South Univ.(Sci. Technol.), 2013, 44(12): 1 (张新明, 暨波, 叶凌英. 稀土Yb对2519A铝合金抗晶间腐蚀性能的影响[J]. 中南大学学报 (自然科学版), 2013, 44(12): 1)
[15] ASTMG. Exfoliation corrosion susceptibility in 2XXX and 7XXX series aluminium alloys (EXCO test)[S], 2001
[16] Li J F, Birbilis N, Li C X, et al. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150[J]. Mater. Charact., 2009, 60(11): 1334
[17] Xiao D H, Huang B Y, Chen K H. Microstructure and corrosion properties of Al-Cu-Mg-Ag-(Sc) alloys[J]. J. Cent. South Univ., 2009, 40(5): 1252 (肖代红, 黄伯云, 陈康华. Al-Cu-Mg-Ag-(Sc) 合金的显微组织与腐蚀性能[J]. 中南大学学报 (自然科学版), 2009, 40(5): 1252)
[1] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] 曹敏, 刘莉, 余钟芬, 李瑛, 王福会. 2A02铝合金在模拟海洋大气环境中的剥蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[3] 王凯, 易耀勇, 卢清华, 易江龙, 江泽新, 马金军, 张宇. 基于窄间隙焊接的热模拟峰值温度对Q690高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[4] 牛振国, 郭浦山, 叶宏, 杨丽景, 许赪, 宋振纶. Zn-7Mg合金热处理显微组织演变及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
[5] 滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[6] 张建春,左龙飞,蒋金洋,麻晗,宋丹. 耐海水腐蚀钢筋00Cr10MoV的组织结构及性能研究[J]. 中国腐蚀与防护学报, 2016, 36(4): 363-369.
[7] 苏艳,张伦武,钟勇. 5A90铝锂合金显微组织及海洋大气环境腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.
[8] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[9] 赵凤, 鲁法云, 穆楠, 郭富安, 张莉. 7050铝合金板材晶粒结构与抗剥落腐蚀性能的关系[J]. 中国腐蚀与防护学报, 2015, 35(5): 423-428.
[10] 张金龙, 屠礼明, 谢兴飞, 姚美意, 周邦新. Zr-1Nb-xGe合金在400 ℃过热蒸汽中耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 171-177.
[11] 黄本生,江仲英,潘欢欢,袁鹏斌,刘清友. 热处理工艺对G105钻杆材料抗腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 67-69.
[12] 米丰毅,王向东,汪兵,陈小平,彭云. 显微组织对低碳钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2010, 30(5): 391-395.
[13] 郭平义,邵勇,高延敏,吴铭方. Yb/Dy掺杂改性Fe-Cr合金热生长氧化膜的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2010, 30(4): 317-322.
[14] 梁叔全,张勇,官迪凯,谭小平,唐艳,毛志伟. 轧制温度对铝阳极Al-Mg-Sn-Bi-Ga-In组织和性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
[15] 陈美玲 刘元栋 杨莉 杨军 高宏. 改性纳米SiC粉体强化铸造奥氏体不锈钢耐点蚀性能的研究[J]. 中国腐蚀与防护学报, 2009, 29(6): 411-414.