Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 419-425    DOI: 10.11902/1005.4537.2014.017
  本期目录 | 过刊浏览 |
2099铝锂合金晶间腐蚀行为与时效制度的相关性
许龙1, 姚希1, 李劲风1(), 蔡超2
1. 中南大学材料科学与工程学院 长沙 410083
2. 宁夏大学化学化工学院 银川 750001
Correlation Between Intergranular Corrosion Behavior and Aging Treatment of 2099 Al-Li Alloy
XU Long1, YAO Xi1, LI Jingfeng1(), CAI Chao2
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750001, China
全文: PDF(3283 KB)   HTML
摘要: 

系统研究了2099铝锂合金晶间腐蚀行为与时效制度 (T6态150和175 ℃时效、T8态150 ℃时效) 的相关性,建立了2099铝锂合金腐蚀-时效进程状态图。结果表明,时效过程按腐蚀类型变化可以分为4个阶段。时效早期发生孔蚀或局部晶间腐蚀,欠时效阶段发生全面晶间腐蚀,近峰时效阶段转变为局部晶间腐蚀,过时效阶段以孔蚀为主。欠时效时,细小的晶界析出相连续分布,晶间腐蚀敏感性较高。过时效阶段晶界析出相粗化,并呈不连续分布,抗晶间腐蚀能力提高。时效温度提高,晶界析出相粗化,析出相间距增加,而时效前预变形能够促进析出相均匀弥散形核,抑制晶界无沉淀带形成,因而导致晶间腐蚀欠时效阶段和近峰失效阶段的时效时间范围缩短或消失,提高了抗晶间腐蚀能力。

关键词 2099铝锂合金晶间腐蚀腐蚀-时效过程    
Abstract

The correlation between the intergranular corrosion (IGC) behavior and the aging temper (including T6 aging at 150 and 175 ℃, T8 aging at 150 ℃) of 2099 Al-Li alloy was investigated. Then a diagram was established to describe the relation of IGC with the aging procedure. According to the aging resulted corrosion morphology of the alloy, the aging process might be divided into four stages: i.e. stage I is the initial aging stage, stage II the under-aging stage, stage III the near-optimal aging stage and stage IV the over-aging stage. The aged alloy showed different modes corrosion after aged by different stages: i.e. pitting corrosion or local intergranular corrosion (LIGC) for stage I; general intergranular corrosion (GIGC) for stage II; LIGC for stage III; and pitting corrosion without IGC for stage IV. In the under-aged alloy, a great number of very fine precipitates preferentially deposited along grain boundaries, which seem like a continuous chain, hence resulting in the highest susceptibility to IGC for the alloy. In the over-aged alloy, the precipitates were coarsened and the inter-precipitate spacing became larger, so that the susceptibility to IGC may be suppressed. In general, with the rising of aging temperature, the grain boundary precipitates grew coarse and the spacing between the precipitates became larger, while a proper pre-deformation of the alloy might facilitate the uniform nucleation of precipitates and suppress the formation of precipitate-free zone (PFZ) along grain boundary. These two factors shortened or even eliminated the Stage II and Stage III, therewith increasing the resistance to IGC of the alloy.

Key words2099 Al-Li alloy    intergranular corrosion    corrosion-aging diagram
    
ZTFLH:  TG166  
基金资助:中南大学教师研究基金项目(2013JSJJ001)和宁夏自然科学基金项目(NZ13012)资助
作者简介: null

许龙,男,1988年生,硕士生,研究方向为铝锂合金腐蚀

引用本文:

许龙, 姚希, 李劲风, 蔡超. 2099铝锂合金晶间腐蚀行为与时效制度的相关性[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
Long XU, Xi YAO, Jingfeng LI, Chao CAI. Correlation Between Intergranular Corrosion Behavior and Aging Treatment of 2099 Al-Li Alloy. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 419-425.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.017      或      https://www.jcscp.org/CN/Y2014/V34/I5/419

Aging temper Temperature / ℃ Time / h
T6 150 0.5, 3, 6, 18, 42, 66, 120, 150, 195
T6 175 0.5, 3, 6, 18, 48, 72, 96
T8 150 0.5, 3, 6, 18, 48, 72, 96
表1  3种时效制度的时效温度和时效时间
图1  2099铝锂合金150 ℃进行T6时效处理不同时间后的典型截面腐蚀形貌
图2  2099铝锂合金175 ℃进行T6时效处理不同时间后的典型截面腐蚀形貌
图3  2099铝锂合金150 ℃进行T6时效处理不同时间后的典型截面腐蚀形貌
图4  2099铝锂合金时效硬度曲线
Temper Aging time / h Dominating corrosion mode Maximum IGC depth / μm
T6 at 150 ℃ 0.5 Pitting None
3 LIGC+ 51.54
6 LIGC++ 242.87
18 GIGC 191.02
42 GIGC 196.58
66 GIGC 191.14
120 LIGC++ 198.63
150 Pitting None
195 Pitting None
0.5 LIGC 108.04
T6 at 175 ℃ 3 GIGC 209.96
6 GIGC 170.64
18 LIGC+ 140.63
48 Pitting None
72 Pitting None
96 Pitting None
0.5 Pitting None
T8 at 150 ℃ 3 LIGC+ 92.31
6 Pitting None
18 Pitting None
48 Pitting None
72 Pitting None
96 Pitting None
表2  3种制度时效不同时间2099铝锂合金腐蚀类型和最大晶间腐蚀深度
图5  Al-Li合金腐蚀-时效进程状态图
图6  2099铝锂合金150 ℃经T6时效48和195 h后的晶界TEM像
图7  2099铝锂合金在175 ℃经T6和150 ℃经T8时效处理48 h后的晶界TEM像
[1] Zheng Z Q, LI J F, Chen Z G, et al. Alloying and microstructure evolution of Al-Li alloys[J]. Trans. Nonferrous Met. Soc. China, 2011, 21(10): 2337-2351
[1] (郑子樵, 李劲风, 陈志国等. 铝锂合金的合金化与微观组织演化[J]. 中国有色金属学报, 2011, 21(10): 2337-2351)
[2] Lin Y, Zheng Z Q, Han Y, et al. Microstructure and properties of 2099 Al-Li alloy[J]. Trans. Nonferrous Met. Soc. China, 2012, 22(8): 2181-2186
[2] (林毅, 郑子樵, 韩烨等. 热处理工艺对2A97铝锂合金拉伸性能和腐蚀性能的影响[J]. 中国有色金属学报, 2012, 22(8): 2181-2186)
[3] Wei X Y, Tan C Y, Zheng Z Q, et al. Influence of aging on corrosion behavior of 2195 Al-Li alloy[J]. Trans. Nonferrous Met. Soc. China, 2004, 14(7): 1195-2000
[3] (魏修宇, 谭澄宇, 郑子樵等. 时效对2195铝锂合金腐蚀行为的影响[J]. 中国有色金属学报, 2004, 14(7): 1195-2000)
[4] Wang H N, Jin L. Influence of heat treatment on intercrystalline corrosion and spalling corrosion of 1420 Al-Li alloy[J]. Heat Treat. Met., 2005, 30(10): 20-22
[4] (王赫男, 金雷. 热处理对1420铝锂合金晶间腐蚀和剥蚀性能的影响[J]. 金属热处理, 2005, 30(10): 20-22)
[5] Rinker J G, Marek M, Sanders J T H,, Microstructure,toughness SCC behavior of 2020 [A]. Second International Aluminum-Lithium Conference [C]. Monterey, California, 1983
[6] Connolly B J, Scully J R. Corrosion cracking susceptibility in Al-Li-Cu alloys 2090 and 2096 as a function of isothermal aging time[J]. Scr. Mater., 2000, 42: 1039-1045
[7] Li J F, Zhang Z, Zhang J Q, et al. Review of research on corrosion behavior of Al-Li alloys[J]. J. Chin. Soc. Corros. Prot., 2003, 23(5): 316-320
[7] (李劲风, 张昭, 张鉴清等. 铝-锂合金腐蚀性能研究综述[J]. 中国腐蚀与防护学报, 2003, 23(5): 316-320)
[8] Svenningsen G, Larsen M H, Walmsley J C, et al. Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content[J]. Corros. Sci., 2006, 48(6): 1528-1543
[9] Lin Y, Zheng Z Q, Li S C, et al. Microstructures and properties of 2099 Al-Li alloy[J]. Trans. Nonferrous Met. Soc. China, 2013, 23(7): 1848-1854
[9] (林毅, 郑子樵, 李世晨等. 2099铝锂合金微观组织及性能[J]. 中国有色金属学报, 2013, 23(7): 1848-1854
[10] Buchheit R Gm, Mathur D, Gouma P I. Corrosion and Corrosion Prevention of Low Density Metals and Alloys [M]. Ohio: The Electrochemical Society Inc., 2001
[11] Kertz J E, Gouma P I, Buchheit R G. Localized corrosion susceptibility of Al-Li-Cu-Mg-Zn alloyAF/C458 due to interrupted quenc hing from solutionizing temperature[J]. Metall. Mater. Trans., 2001, 32(10)A: 2561-2573
[12] Padgett B N. Investigation into the stress corrosion cracking properties of AA2099, an Al-Li-Cu alloy [D]. Ohio: Ohio State University, 2008
[13] Buchheit R G, Moran J P, Stone G E. Electrochemical behavior of the T1 (Al2CuLi) intermetallic compound and its role in localized corrosion of Al-2%Li-3%Cu alloys[J]. Corrosion, 1994, 50(2): 120-130
[14] Li J F, Li C X, Peng Z W, et al. Corrosion mechanism associated with T1 and T2 precipitates of Al-Cu-Li alloys in NaCl solution[J]. J. Alloys Compd., 2008, 460(1): 688-693
[15] Li H Y, Zheng Z D, Wang L X, et al. Study on exfoliation corrosion of T6 aged T8 aged of a new type Al-Cu-Li alloy[J]. Trans. Mater. Heat Treat., 2007, 28(6): 134-147
[15] (李红英, 曾再得, 王娄翔等. 时效状态对新型 Al-Cu-Li 系合金剥落腐蚀性能的影响[J]. 材料热处理学报, 2007, 28(6): 134-138)
[1] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[2] 刘希武,赵小燕,崔新安,许兰飞,李晓炜,程荣奇. 304L不锈钢在硝酸-硝酸钠环境中的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[3] 赵小燕, 刘希武, 崔新安, 于凤昌. 304L不锈钢在稀硝酸环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[4] 刘丹阳, 汪洁霞, 李劲风, 陈永来, 张绪虎, 许秀芝, 郑子樵. Mg,Ag,Zn微合金化Al-Cu-Li系铝锂合金T6态时效的晶间腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[5] 刘德强,柯黎明,徐卫平,邢丽,毛育青. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[6] 彭新元,周贤良,华小珍. 晶粒尺寸对316LN不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[7] 俞树荣,何燕妮,李淑欣,王璐. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
[8] 冯万里,张乐福,马明娟. 轧制变形对690合金特殊晶界比例及耐晶间腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[9] 饶思贤,万章,宋光雄,张铮,钟群鹏. 基于规则的晶间腐蚀和氢致开裂的失效模式诊断[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.
[10] 胡轶嵩,王俭秋,柯伟,韩恩厚. 690TT合金在高温含铅碱液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(6): 427-432.
[11] 孙涛,邓博, 徐菊良,李劲,蒋益明. 氮、铌添加对304奥氏体不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
[12] 李朝兴;李劲风;BIRBILIS Nick;贾志强;郑子樵. Mg2Si及Si粒子在Al-Mg-Si合金晶间腐蚀中协同作用机理的多电极偶合研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 107-113.
[13] 王玮;罗明;张启富;柳伟. 硝酸级(NAG)310L不锈钢焊接接头在含Cr6+的HNO3溶液中的耐蚀性[J]. 中国腐蚀与防护学报, 2010, 30(1): 78-82.
[14] 秦丽雁; 宋诗哲; 卢玉琢 . 304不锈钢晶间腐蚀过程中的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2007, 27(2): 74-79 .
[15] 陈世波; 王晓波 . 18-8奥氏体不锈钢的晶间腐蚀[J]. 中国腐蚀与防护学报, 2007, 27(2): 124-128 .