Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (2): 113-121    DOI: 10.11902/1005.4537.2013.262
  本期目录 | 过刊浏览 |
环境因素对X100钢表面钝化膜性能的影响
赵阳1, 梁平1(), 史艳华1, 张云霞2
1. 辽宁石油化工大学机械工程学院 抚顺 113001
2. 辽宁石油化工大学继续教育学院 抚顺 113001
Influence of Environmental Factors on Property of Passive Film Formed on X100 Pipeline Steel
ZHAO Yang1, LIANG Ping1(), SHI Yanhua1, ZHANG Yunxia2
1. School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2. Continual Education Institute, Liaoning Shihua University, Fushun 113001, China
全文: PDF(1231 KB)   HTML
摘要: 

利用极化曲线、电化学阻抗和电容法研究了温度、pH值和Cl-浓度对X100管线钢在高pH值土壤模拟溶液中所成钝化膜性能的影响。结果表明:X100管线钢在不同的介质中都可以发生钝化,但随着温度从20 ℃升到60 ℃、Cl-浓度从0.001 mol/L增大到0.005 mol/L以及pH值从10.84下降到9.27时,X100管线钢的钝化区间范围减小,抗腐蚀性能下降。电化学阻抗结果表明:随着温度升高、Cl-浓度增大和pH值下降,钝化膜的致密性下降,而温度是影响钝化膜致密性的最主要因素;电容测试和理论计算表明:Cl-浓度是影响钝化膜厚度的最主要因素,而温度则是影响钝化膜缺陷密度和缺陷扩散系数的最主要因素。

关键词 X100管线钢环境因素半导体特性Mott-Schottky分析电化学阻抗谱    
Abstract

Effect of temperature, pH and chloride ion concentration on the property of passive films formed on X100 pipeline steel were investigated in an artificial soil solution by polarization curves, electrochemical impedance spectroscopy (EIS) and capacitance measurements technique. The results polarization measurement showed that the range of passive potential and the corrosion resistance of the steel decreased with the increasing temperature from 20 to 60 ℃, the increasing Cl- concentration from 0.001 to 0.005 mol/L and the decreasing pH value from 10.84 to 9.27 respectively. EIS results displayed that the compactness of passive films decreased with the increasing temperature and Cl- concentration, and the decreasing pH respectively, while temperature exhibited the strongest effect among the three factors on the compactness of the passive films. The results of capacitance measurement and theoretical calculation implied that the Cl- concentration exhibited the strongest effect on the thickness of passive film, while temperature exhibited the strongest effect on the defect density and diffusion coefficient of the passive films.

Key wordsX100 pipeline steel    environmental factor    semi-conductive property    Mott-Schottky analysis    EIS
收稿日期: 2013-12-10     
ZTFLH:  TG142.71  
基金资助:辽宁省教育厅2012年科学研究一般项目 (L2012127)资助
作者简介: null

赵阳,男,1989年生,硕士生

引用本文:

赵阳, 梁平, 史艳华, 张云霞. 环境因素对X100钢表面钝化膜性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.
Yang ZHAO, Ping LIANG, Yanhua SHI, Yunxia ZHANG. Influence of Environmental Factors on Property of Passive Film Formed on X100 Pipeline Steel. Journal of Chinese Society for Corrosion and protection, 2015, 35(2): 113-121.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.262      或      https://www.jcscp.org/CN/Y2015/V35/I2/113

Experimental condition Solution composition
Temperature / ℃ 20 0.5 mol/L NaHCO3
40 0.5 mol/L NaHCO3
60 0.5 mol/L NaHCO3
pH 9.27 0.05 mol/L NaHCO3+0.25 mol/L Na2CO3
9.78 0.25 mol/L NaHCO3+0.25 mol/L Na2CO3
10.84 0.05 mol/L NaHCO3+0.5 mol/L Na2CO3
Cl-/molL-1 0.001 0.5 mol/L NaHCO3+0.001 mol/L NaCl
0.003 0.5 mol/L NaHCO3+0.003 mol/L NaCl
0.005 0.5 mol/L NaHCO3+0.005 mol/L NaCl
表1  不同实验条件下的溶液组成
图1  温度、pH值和Cl-浓度对X100管线钢在高pH值溶液中极化曲线的影响
图2  不同温度各成膜电位下X100钢表面钝化膜的Nyquist 曲线
图3  等效模拟电路
Temperature
Formation
potential / V
RS
Ωcm2
Qf×10-4
Fcm2
n1 Rf×104
Ωcm2
Qdl×10-4
Fcm2
n2 Rct×103
Ωcm2
20 0.1 11.82 5.750 0.927 3.170 6.82 0.912 5.360
0.2 14.14 5.403 0.926 3.581 6.88 0.911 9.761
0.3 10.67 5.359 0.929 4.057 5.68 0.920 12.19
0.4 6.058 5.074 0.927 5.233 4.28 0.937 14.01
40 0.1 8.932 5.970 0.901 1.588 4.63 0.901 2.491
0.2 6.027 7.249 0.917 2.652 5.54 0.945 5.854
0.3 5.469 6.542 0.913 4.414 6.87 0.916 6.542
0.4 5.285 5.536 0.904 5.125 7.72 0.925 6.933
60 0.1 4.311 4.942 0.945 1.088 6.70 0.914 2.246
0.2 5.124 5.893 0.913 2.430 7.75 0.946 4.562
0.3 3.461 5.714 0.925 4.018 6.21 0.936 5.623
0.4 6.156 6.321 0.905 5.048 5.45 0.906 5.825
表2  电化学阻抗图的拟合结果
图4  X100钢表面钝化膜在不同pH值溶液中的Nyquist曲线
图5  X100钢表面钝化膜在不同Cl-浓度溶液中的Nyquist曲线
pH Formation
potential / V
Rf×104
Ωcm2
[Cl-]
mol/L
Formation potential / V Rf×103
Ωcm2
Temperature
Formation potential / V Rf×104
Ωcm2
9.27 0.1 1.112 0.001 0.1 9.621 20 0.1 11.82
0.2 1.652 0.2 9.758 0.2 14.14
0.3 3.626 0.3 9.898 0.3 10.67
0.4 4.009 0.4 10.257 0.4 6.058
9.78 0.1 1.217 0.003 0.1 7.913 40 0.1 8.932
0.2 1.897 0.2 8.345 0.2 6.027
0.3 4.654 0.3 9.165 0.3 5.469
0.4 6.568 0.4 9.752 0.4 5.285
10.84 0.1 1.362 0.005 0.1 6.586 60 0.1 4.311
0.2 3.288 0.2 7.894 0.2 5.124
0.3 5.678 0.3 8.965 0.3 3.461
0.4 7.895 0.4 9.968 0.4 6.156
表3  不同条件下电化学阻抗谱的拟合结果
图6  不同温度下钝化膜厚度与成膜电位之间的关系曲线
Experimental condition Fitting equation x =0.1
Temperature 20 ℃ y =1.8836x+0.4924 y =0.6808
40 ℃ y =1.9230x+0.3765 y =0.5688
60 ℃ y =1.7752x+0.3528 y =0.5303
pH 9.27 y =3.3452x+0.9599 y =1.2944
9.78 y =3.2542x+1.2753 y =1.6007
10.84 y =3.2473x+1.5822 y =1.9069
Cl- 0.001 y =1.338x+0.1403 y =0.2741
0.003 y =0.6380x+0.1302 y =0.1940
0.005 y =0.2870x+0.1276 y =0.1563
表4  不同条件下钝化膜厚度与成膜电位之间的拟合曲线
图7  不同温度下X100钢表面钝化膜的Mott-Schottky曲线
Formation potential / V 20 ℃ 40 ℃ 60 ℃
10-21 ND/cm-3 10-21 ND/cm-3 10-21 ND'/cm-3 10-21 (ND+ND')/cm-3 10-21 ND/cm-3 10-21 ND'/cm-3 10-21 (ND+ND')/cm-3
0.1 1.584 2.957 2.472 5.429 2.976 2.653 5.629
0.2 1.247 2.919 1.754 4.637 2.938 1.984 4.922
0.3 0.996 2.570 1.263 3.833 2.677 1.493 4.170
0.4 0.904 2.350 1.024 3.374 2.556 1.186 3.742
表5  不同温度下钝化膜内的施主密度
图8  不同pH值溶液中X100钢表面钝化膜的Mott-Schottky曲线
图9  X100钢在不同Cl-浓度溶液中所成钝化膜的Mott-Schottky曲线
Temperature
Formation potential / V 10-21
(ND+ND')/cm-3
pH Formation potential / V 10-21
(ND+ND')/cm-3
[Cl-]
mol/L
Formation potential / V 10-21
(ND+ND')/cm-3
20 0.1 1.584 9.27 0.1 7.955 0.001 0.1 7.017
0.2 1.247 0.2 5.824 0.2 6.034
0.3 0.996 0.3 5.204 0.3 5.031
0.4 0.904 0.4 4.674 0.4 4.254
40 0.1 5.429 9.78 0.1 5.893 0.003 0.1 21.76
0.2 4.637 0.2 4.929 0.2 11.13
0.3 3.833 0.3 4.418 0.3 7.741
0.4 3.374 0.4 3.724 0.4 6.537
60 0.1 5.629 10.84 0.1 5.612 0.005 0.1 45.108
0.2 4.922 0.2 4.219 0.2 25.246
0.3 4.170 0.3 3.715 0.3 18.997
0.4 3.742 0.4 3.198 0.4 14.621
表6  不同条件下钝化膜内施主密度计算结果
Environmental parameter Experimental condition D0 / 10-17cm2s-1
Temperature 20 ℃ 1.755×10-17
40 ℃ 3.264×10-17
60 ℃
5.147×10-17
pH 9.27 1.551×10-17
9.78 0.847×10-17
10.84 0.553×10-17
Cl- 0.001 mol/L 1.076×10-17
0.003 mol/L 1.906×10-17
0.005 mol/L 3.568×10-17
表7  不同条件下钝化膜的缺陷扩散系数
[1] Zhuang C J, Feng Y R, Huo C Y, et a1. The development and its future research direction of grade X80 pipeline steel in China[J]. Welded Pipe Tube, 2005, 28(2): 10
[1] (庄传晶, 冯耀荣, 霍春勇等. 国内X80级管线钢的发展及今后的研究方向[J]. 焊管, 2005, 28(2): 10)
[2] Cheng Y F, Luo J L. A comparison of the pitting susceptibility and semiconducting properties of the passive films on carbon steel in chromate and bicarbonate solutions[J]. Appl. Surf. Sci., 2000, 167(1/2): 113
[3] Zeng Y M, Luo J L. Electronic band structure of passive film oil X70 pipeline steel[J]. Electrochim. Acta, 2003, 48(23): 3551
[4] Jia Z J, Li X G, Liang P, et al. Electrochemical characterization of passive film formed under different potential condition on X70 pipeline steel in NaHCO3 solution [J]. J. Chin. Soc. Corros. Prot., 2010, 30(3): 241
[4] (贾志军, 李晓刚, 梁平等. 成膜电位对X70管线钢在NaHCO3溶液中钝化膜电化学性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(3): 241)
[5] Mu L J, Zhao W Z. Influences of temperature, chloride ion and Cr on the semiconductor performance in the passive film on J55 oil casing steel[J]. J. Xi'an Shiyou Univ.(Nat. Sci.), 2010, 25(6): 76
[5] (慕立俊, 赵文轸. 温度、Cl-和铬元素对J55油套管钢钝化膜半导体性能的影响[J]. 西安石油大学学报 (自然科学版), 2010, 25(6): 76)
[6] Sikora J, Sikora E, MacDonald D D. The eleetronic structure of the passive film on tungsten[J]. Electrochim. Acta, 2000, 45(12): 1875
[7] Gercasi C A, Folquer M E, Vallejo A E, et al. Electron transfer across anodic films formed on tin in carbonate-bicarbonate buffer solution[J]. Electrochim. Acta, 2005, 50(5): 1113
[8] Li W S, Luo J L. Uniformity of passive films formed on ferrite and mart ensite by different inorganic inhibitors[J]. Corros. Sci., 2002, 44(8): 1695
[9] Sun F L, Meng G Z, Zhang T, et a1. Electrochemical corrosion behavior of nickel coating with high densitynano-scale twins (NT) in solution with Cl−[J]. Electrochim. Acta, 2009, 54(5): 1578
[10] Gercasi C A, Folquer M E, Vallejo A E, et al. Electron transfer across anodic films formed on tin in carbonate-bicarbonate buffer solution[J]. Electrochim. Acta, 2005, 50(5): 1113
[11] Li D G, Feng Y R, Bai Z Q, et al. Influences of temperature, pH value and chloride ion on the diffusivity of point defect in the passive film on X80 pipeline steel[J]. Acta Chim. Sin., 2008, 66(10): 1151
[11] (李党国, 冯耀荣, 白真权等. 温度、pH值和Cl-对X80钢钝化膜内点缺陷扩散系数的影响[J]. 化学学报, 2008, 66(10): 1151)
[12] Alves V, Brett C. Influence of alloying on the passive behaviour of steels in bicarbonate medium[J]. Corros. Sci., 2002, 44(9): 1949
[13] Ahn S J, Kwon H S. Effects of solution temperature on electronic properties of passive film formed on Fe in pH 8.5 borate buffer solution[J]. Electrochim. Acta, 2004, 49(20): 3347
[14] Pagitsas M, Diamantpoulou A, Sazou D. A point defect model for the general and pitting corrosion on iron oxide electrolyte interface deduced from current oscillations[J]. Chaos Soliton. Fractal., 2003, 17(2/3): 263
[15] Krishnamurthy B, White R E, Ploehn H J. Simplified point defect model for growth of anodic passive films on iron[J]. Electrochim. Acta, 2002, 47(20): 3375
[16] Cheng Y F, Yang C, Luo J L. Determination of the diffusivity of point defects in passive films on carbon steel[J]. Thin Solid Films, 2002, 416(1/2): 169
[1] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[5] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[7] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[10] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[11] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[12] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[13] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.