Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (1): 38-42    DOI: 10.11902/1005.4537.2013.259
  本期目录 | 过刊浏览 |
pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响
叶超1, 杜楠1(), 田文明2, 赵晴1, 朱丽3
1. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
2. 北京航空航天大学材料科学与工程学院 北京 100191
3. 中航工业成飞制造工程部 成都 610092
Effect of pH on Pitting Corrosion Process of 304 Stainless Steel in 3.5%NaCl Solution
YE Chao1, DU Nan1(), TIAN Wenming2, ZHAO Qing1, ZHU Li3
1. Key Discipline Laboratory of National Defence of Light Alloy Processing Science and Technology Institute, Nanchang Hangkong University, Nanchang 330063, China
2. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
3. Department of AVIC Chengdu Manufacturing Engineering, Chengdu 610092, China
全文: PDF(1275 KB)   HTML
摘要: 

采用恒电位极化及三维视频显微技术研究不同pH值对304不锈钢在3.5%NaCl溶液中单个蚀孔的点蚀动力学及腐蚀形貌特征的影响。结果表明,当pH值等于1,4,7,10和14,极化电位为0.15 Vvs SCE时,单个蚀孔的点蚀电流、蚀孔体积、深度及孔口直径的增加速率随pH值的降低而增大。在同一pH值下,孔深的增加速率随时间的延长而增大,孔口直径的增加速率随时间的延长而减小。不同pH值下,单个蚀孔的生长均受腐蚀产物扩散控制。蚀孔表面为多孔花边盖,并且花边盖板的完整度随pH值的降低而下降。

关键词 304不锈钢pH值点蚀动力学腐蚀形貌扩散控制    
Abstract

Effect of pH values on pitting dynamics and morphology of single pits of 304 stainless steel in 3.5%NaCl solution was studied by means of potentiostatic polarization and 3-dimensional video microscope. The results showed that the pitting current, the growth rate of pit volume, the pit depth and pit mouth diameter of single pits increase with the decreasing pH in a range 1 to 14 by applied potential of 0.15 Vvs SCE. In solutions with the same pH, the growth rate of pit depth increases with time, while the growth rate of pit mouth diameter decreases with time. In solutions with different pH, the growth of single pit is controlled by the diffusion through corrosion products. There exists lacy cover on the wall of pit mouth, and the integrity of the lacy cover declines with the increase of pH.

Key words304 stainless steel    pH    pitting dynamics    corrosion morphology    diffusion controlled
    
ZTFLH:  TG172  
基金资助:国家自然科学基金项目 (51071083) 资助
作者简介: null

叶超,女,1988年生,硕士生

引用本文:

叶超, 杜楠, 田文明, 赵晴, 朱丽. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
Chao YE, Nan DU, Wenming TIAN, Qing ZHAO, Li ZHU. Effect of pH on Pitting Corrosion Process of 304 Stainless Steel in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 38-42.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.259      或      https://www.jcscp.org/CN/Y2015/V35/I1/38

图1  在3.5%NaCl溶液中, 不同pH值下单个蚀孔点蚀电流随时间的变化
pH Surface diameter
μm
Depth
μm
Base diameter
μm
Volume
μm3
1 145.59 193.95 110.62 1.56×106
4 158.14 234.65 105.48 2.46×106
7 127.13 132.24 91.31 6.72×105
10 76.18 50.37 50.29 9.19×104
14 91.47 91.56 55.64 2.78×105
表1  不同pH值下极化后单个蚀孔的参数
图2  在3.5%NaCl溶液中, 不同pH值下单个蚀孔体积随时间的变化
图3  在3.5%NaCl溶液中, 不同pH值下单个蚀孔深度和口径深度随时间的变化
图4  在3.5%NaCl溶液中, 不同pH值下单个蚀孔电流密度随时间的变化
图5  在3.5%NaCl溶液中, 不同pH值下蚀孔表面金属盖板形貌图
[1] Rybalka K V, Shaldaev V S, Beketaeva L A, et al. Development of pitting corrosion of stainless steel 403 in sodium chloride solutions[J]. Russ. J. Electrochem., 2010, 46(2): 196
[2] Li L, Li X G, Dong C F, et al. Cellular automaton model for simulation of metastable pitting[J]. Corros. Eng. Sci. Technol., 2011, 46(4): 340
[3] Berthome′ G, Malki B, Baroux B. Pitting transients analysis of stainless steels at the open circuit potential[J]. Corros. Sci., 2006, 48: 2432
[4] Wang M F, Li X G, Du N, et al. Direct evidence of initial pitting corrosion[J]. Electrochem. Commun., 2008, 10(7): 1000
[5] Pujar M G, Anita T, Shaikh H, et al. Use of electrochemical noise (EN) technique to study the effect of sulfate and chloride ions on passivation and pitting porrosion behavior of 316 stainless steel[J].J. Mater. Eng. Perform., 2007, 16(4): 494
[6] Ernst P, Newman R C. Pit growth studies in stainless steel foils. II:Effect of temperature, chloride concentration and sulphate addition[J]. Corros. Sci., 2002, 44(5): 943
[7] Hong T, Nagumo M. The effect of chloride concentration on the early stages of pitting for type 304 stainless steel revealed by the ac impedance method[J]. Corros. Sci., 1997, 39(2): 285
 Pardo A, Otero E, Merino M C, et al. Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels[J]. Corrosion, 2000, 56(4): 411
[9] Gong X Z, Xiao J, Zuo Y, et al. Effect of pH value on metastable pitting behavior of stainless steel[J]. J. Univ. Chem. Technol. Beijing,2002, 29(4): 29
[9] (龚小芝, 肖娟, 左禹等. 溶液pH值对不锈钢亚稳态孔蚀行为的影响[J]. 北京化工大学学报, 2002, 29(4): 29)
[10] Tang Z L. Kinetic analysis on pitting growth[J]. J. Chin. Soc. Corros. Prot., 1998, 18(4): 241
[10] (唐子龙. 孔蚀发展过程动力学分析[J]. 中国腐蚀与防护学报, 1998, 18(4): 241)
[11] Sun D M, Jiang Y M, Li J, et al. The relaotionship between the rupture of pitting cover and stability transition on stainless steel[J]. J. Univ. Zhengzhou, 2009, 30(1): 70
[11] (孙道明, 蒋益明, 李劲等. 不锈钢点蚀花边盖脱落与稳定生长[J]. 郑州大学学报, 2009, 30(1): 70)
[12] Liang C H, Gao Y. Influence of sensibilization heat treatment on corrosion resistance of 304 stainless steel[J]. Chem. Eng. Mach., 1995, 22(2): 87
[12] (梁成浩, 高扬. 304不锈钢敏化热处理对耐蚀行的影响[J]. 化工机械, 1995, 22(2): 87)
[13] Popov Y A, Kovalchukov N A, Rybakov Y P. Role of the interaction of corrosion pittings in the dynamics of their evolution[J]. Russ. J. Phys. Chem., 2006, 80(9): 1504
[14] Ryan M P, William D E, Chater R J, et al. Why stainless steel corrodes[J]. Nature, 2002, 415(14): 770
[15] Ernst P, Laycock N J, Moayed M H, et al. The mechnism of lacy cover formation in pitting[J]. Corros. Sci., 1999, 39(6): 1133
[1] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[4] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[5] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[6] 彭文山,侯健,丁康康,郭为民,邱日,许立坤. 深海环境中304不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[7] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[8] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[9] 张思齐,杜楠,王梅丰,王帅星,赵晴. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[10] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[11] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[12] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[13] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[14] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[15] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.