Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (1): 61-68    DOI: 10.11902/1005.4537.2013.255
  本期目录 | 过刊浏览 |
腐蚀与交变载荷循环作用对2A12-T4铝合金疲劳寿命的影响
蔡剑1, 刘道新1(), 叶作彦1, 张晓化1, 何宇廷2, 崔腾飞1
1. 西北工业大学航空学院 西安 710072
2. 空军工程大学航空航天工程学院 西安 710038
Influence of Cyclic Action of Corrosion and Alternate Load on Fatigue Life of 2A12-T4 Aluminum Alloy
CAI Jian1, LIU Daoxin1(), YE Zuoyan1, ZHANG Xiaohua1, HE Yuting2, CUI Tengfei1
1. School of Aeronautics, Northwestern Polytechnic University, Xi'an 710072, China
2. School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an 710038, China
全文: PDF(5961 KB)   HTML
摘要: 

对2A12-T4典型航空铝合金进行了腐蚀与疲劳交替循环实验,研究了腐蚀与疲劳加载交替循环频次、腐蚀方式 (周期浸润腐蚀、盐雾腐蚀、盐雾腐蚀+湿热腐蚀) 对2A12-T4铝合金疲劳性能退化规律的影响和作用机制。结果表明:在腐蚀总时间相同的条件下,腐蚀与疲劳交替循环频次对铝合金疲劳寿命有重要影响,随着交替频次的增加,铝合金疲劳寿命逐渐增大,循环交替2,4和6次的铝合金试样的疲劳寿命比交替1次试样的疲劳寿命分别增大16.9%,30.7%和50.3%。腐蚀方式对铝合金疲劳寿命也有重要的影响,对铝合金疲劳寿命影响程度从大到小的腐蚀方式排序为:盐雾腐蚀>周期浸润腐蚀>盐雾与湿热循环腐蚀。上述影响规律与腐蚀因素所起权重大小及内在机制密切相关。

关键词 2A12-T4铝合金腐蚀疲劳腐蚀介质与交变载荷循环作用腐蚀方式    
Abstract

Tests of alternate corrosion and fatigue for 2A12-T4 aluminum alloy were performed in order to reveal the influence of factors related with corrosion environment and load on its fatigue life. The effect of the alternate frequency of corrosion/fatigue and the type of corrosion tests such as alternate immersion, salt spray and salt spray+hot and humidity corrosion on the degradation of 2A12-T4 aluminum alloy was analyzed. The results show that for a designated total time of corrosion, the alternate frequency of corrosion/fatigue has important influence on the fatigue life of the alloy. The fatigue life of the alloy increases gradually with the increasing alternate frequency. The total fatigue life of aluminum alloy for 2, 4 and 6 cycles were 16.9%, 30.7% and 50.3% respectively higher than that for the first cycle. Besides, the type of corrosion tests also has important influence on the fatigue life of the alloy, of which the impact intensity may be ranked in a descending order as follows: salt spray corrosion>alternate immersion corrosion>salt spray+hot and humidity corrosion.

Key words2A12-T4 aluminum alloy    corrosion    fatigue    the alternate action of environment medium and stress    corrosion type
    
ZTFLH:  TG172.9  
基金资助:国家自然科学基金项目(51171154) 资助
作者简介: null

蔡剑,男,1989年生,硕士生

引用本文:

蔡剑, 刘道新, 叶作彦, 张晓化, 何宇廷, 崔腾飞. 腐蚀与交变载荷循环作用对2A12-T4铝合金疲劳寿命的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 61-68.
Jian CAI, Daoxin LIU, Zuoyan YE, Xiaohua ZHANG, Yuting HE, Tengfei CUI. Influence of Cyclic Action of Corrosion and Alternate Load on Fatigue Life of 2A12-T4 Aluminum Alloy. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 61-68.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.255      或      https://www.jcscp.org/CN/Y2015/V35/I1/61

图1  试样尺寸
图2  腐蚀与疲劳交替实验方案
图3  腐蚀与疲劳交替频次对铝合金疲劳寿命的影响
图4  腐蚀与疲劳交替不同频次试样的断口形貌
图5  腐蚀与疲劳交替不同频次试样的断口最大腐蚀区形貌
图6  腐蚀方式对铝合金疲劳寿命的影响
图7  不同腐蚀方式试样断口形貌
图8  不同腐蚀方式试样疲劳断口腐蚀区形貌
图9  不同腐蚀方式试样表面腐蚀形貌
图10  不同腐蚀方式试样表面最大腐蚀坑的三维立体显微形貌
[1] Liu W T,Li Y H,et al. Evaluation Technique for Calendar Life System of Aircraft Structure[M]. Beijing: Aviation Industry Press, 2004
[1] (刘文廷,李玉海等. 飞机结构日历寿命体系评定技术[M]. 北京: 航空工业出版社, 2004)
[2] Chen Y L, Bian G X, Yi L, et al. Research on fatigue characteristic and fracture mechanics of aluminum alloy under alternate action of corrosion and fatigue[J]. J. Mech. Eng., 2012, 20: 66
[2] (陈跃良, 卞贵学, 衣林等. 腐蚀与疲劳交替作用下飞机铝合金疲劳性能及断裂机理研究[J]. 机械工程学报, 2012, 20: 66)
[3] Jiang Z G,Tian D S,Zhou Z T. Load/environment Spectrum of Aircraft Structure[M]. Beijing: Electronic Industry Press, 2012
[3] (蒋祖国,田丁栓,周占廷. 飞机结构载荷/环境谱[M]. 北京: 电子工业出版社, 2012)
[4] Liu W T, Li Y H, Chen Q Z, et al. Accelerated corrosion environmental spectrums for testing surface coatings of critical areas of flight aircraft structures[J]. J. Beijing Univ. Aeronaut. Astronaut., 2002, 28(1): 109
[4] (刘文珽, 李玉海, 陈群志等. 飞机结构腐蚀部位涂层加速实验环境谱研究[J]. 北京航空航天大学学报, 2002, 28(1): 109)
[5] Jones K, Shinde S R, Clark P N, et al. Effect of prior corrosion on short crack behavior in 2A12-T3 aluminum[J]. Corros. Sci., 2008, 50: 2588
[6] Alexopoulos N D, Dalakouras C J, Skarvelis P, et al. Accelerated corrosion exposure in ultra thin sheets of 2024 aircraft aluminium alloy for GLARE applications[J]. Corros. Sci., 2012, 55: 289
[7] Miller R N, Schuessler R L. Predicting service life of aircraft coating in various environments[J]. Corrosion, 1989, 45(4): 17
[8] Medved J J, Breton A M, Irving P E. Corrosion pit size distributions and fatigue lives: A study of the EIFS technique for fatigue design in the presence of corrosion[J]. Int. J. Fatigue, 2004, 26: 71
[9] Gruenberg K M, Craig B A, Hillberry B M, et al. Predicting fatigue life of pre-corrode 2024-T3 aluminum alloy[J]. Int. J. Fatigue, 2004, 26: 629
[10] Lin C, Wang F P, Li X G. The progress of research methods on atmospheric corrosion[J]. J. Chin. Soc. Corros. Prot., 2004, 24(4): 249
[10] (林翠, 王凤平, 李晓刚. 大气腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2004, 24(4): 249)
[11] Montoya P, Diaz I, Granizo N, et al. An study on accelerated corrosion testing of weathering steel[J]. Mater. Chem. Phys., 2013, 142(1): 220
[12] Papadopoulos M P, Apostolopoulos C A, Zervaki A D, et al. Corrosion of exposed rebars associated mechanical degradation and correlation with accelerated corrosion tests[J]. Constr. Build. Mater., 2011, 25(8): 3367
[13] Liu Y H, Ren S Y. Study on equivalent accelerated corrosion test environment spectrum of typical marine atmosphere[J]. Equip. Environ. Eng., 2011, 8(1): 48
[13] (刘元海, 任三元. 典型海洋大气环境当量加速实验环境谱研究[J]. 装备环境工程, 2011, 8(1): 48)
[14] Liu D X. Corrosion and Protection of Materials[M]. Xi'an: Northwestern Polytechnical University Press, 2006
[14] (刘道新. 材料的腐蚀与防护[M]. 西安: 西北工业大学出版社, 2006)
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[7] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[8] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[9] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[10] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[11] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[12] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.