Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (1): 12-20    DOI: 10.11902/1005.4537.2013.253
  本期目录 | 过刊浏览 |
深海环境中的材料腐蚀与防护研究进展
曹攀1,2, 周婷婷1,2, 白秀琴1,2(), 袁成清1,2
1.武汉理工大学能源与动力工程学院可靠性工程研究所,武汉 430063
2.武汉理工大学 船舶动力工程技术交通行业重点实验室,武汉 430063
Research Progress on Corrosion and Protection in Deep-sea Environment
CAO Pan1,2, ZHOU Tingting1,2, BAI Xiuqin1,2(), YUAN Chengqing1,2
1. Reliability Engineering Institute, School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, 430063, China
2. Key Laboratory of Marine Power Engineering & Technology (Ministry of Transport), Wuhan University of Technology, Wuhan, 430063, China
全文: PDF(1823 KB)   HTML
摘要: 

论述了溶氧量、压力、盐度、温度和流速等深海环境因素的特点及对金属和合金等材料的影响,得出了这些因素是影响深海环境下金属及合金材料腐蚀重要因素的结论。阐述了深海环境下金属和合金材料的腐蚀现状,介绍了点蚀、缝隙腐蚀、隧道腐蚀和应力腐蚀这4种常见的腐蚀类型,并给出了预防和减少深海环境下金属及合金材料腐蚀的几种常见措施。

关键词 深海环境腐蚀防护    
Abstract

Deep-sea environment is very harsh, and will have a huge impact on underwater vehicle and deep-sea device. This article discusses of the corrosion related factors in deep-sea environment such as the dissolved oxygen, pressure, salinity, temperature, flow rate etc. as well as their impact on the corrosion of metals, alloys and other materials, then comes to the conclusion that the dissolved oxygen is the most important factor for the corrosion of metals and alloys. The research status quo of deep-sea environment corrosion of metal and alloy materials are reviewed with emphasis on four common types of corrosion such as pitting corrosion, crevice corrosion, tunnel corrosion and stress corrosion. Finally countermeasures for the corrosion control of metals and alloys in deep-sea environment are also introduced.

Key wordsdeep-sea environment    corrosion    protection
    
ZTFLH:  TG172.5  
基金资助:教育部新世纪优秀人才支持计划项目 (NCET-12-0910)和湖北省高端人才引领培养计划项目 ([2012]86号) 资助
作者简介: null

曹攀,男,1989年生,硕士生

引用本文:

曹攀, 周婷婷, 白秀琴, 袁成清. 深海环境中的材料腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2015, 35(1): 12-20.
Pan CAO, Tingting ZHOU, Xiuqin BAI, Chengqing YUAN. Research Progress on Corrosion and Protection in Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 12-20.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.253      或      https://www.jcscp.org/CN/Y2015/V35/I1/12

Depth
m
Temperature
Salinity
Oxygen
mgL-1
300 10.8 34.4 3.46
500 8.0 34.4 2.66
800 5.2 34.5 2.48
1200 3.4 34.6 2.66
2000 2.5 34.6 2.96
3000 2.4 34.6 3.20
表1  南海海水环境因素数据[6]
图1  渤海某油田碳钢挂片表面的点蚀形貌的SEM像[29]
图2  浮球定位架上304不锈钢腐蚀情况[34]
图3  卸扣应力腐蚀图[36]
[1] Chen M N. Bacterial diversity of deep-sea sediments from the east and west pacific ocean [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2007
[1] (陈明娜. 东-西太平洋深海沉积物细菌多样性研究 [D]. 北京: 中国科学院研究生院, 2007)
[2] Mo J, Xiao F. Development of world deepwater technology[J]. Mar.
[2] Geol. Front., 2012, 28(6): 65
[2] (莫杰, 肖菲. 世界深海技术的发展[J]. 海洋地质前沿, 2012, 28(6): 65)
[3] Liu C. Materials rushed into the deep sea[J]. Adv. Mater. Ind., 2013,(9): 69
[3] (刘超. 进军深海材料争先[J]. 新材料产业, 2013, (9): 69)
[4] Jiang H, Wang H. Research survey of global deepwater materials[J]. Adv. Mater. Ind., 2013, (11): 7
[4] (江洪, 王徽. 全球深海材料研究概况[J]. 新材料产业, 2013, (11): 7)
[5] Robert E R. translated by Yang X, Bao C X. Elements of Ocean Engineering[M]. Shanghai: Shanghai Jiaotong University Press, 2002
[5] (兰德尔著. 杨槱, 包丛喜译. 海洋工程基础[M]. 上海: 上海交通大学出版社, 2002)
[6] Hou J, Guo W M, Deng C L. Influence of deep-sea environmental factors on corrosion behavior of carbon steel[J]. Equip. Environ. Eng., 2008, 5(6): 82
[6] (侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响[J]. 装备环境工程, 2008, 5(6): 82)
[7] Liu B,Cong Y,Zhang T,et al. Infuence of deep-sea environment on corrosion behavior of pure nickel: Influence of hydrostatic pressures on performance of passive film on purenickel [J]. Corros. Sci. Prot. Technol., 2009, 21(1): 5
[7] (刘斌, 丛园, 张涛等. 深海环境下静水压力对纯镍腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(1): 5)
[8] Beccaria A M,Poggi G,Castello G. Influence of passion film composition and sea water pressure on resistance to localized corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30(4): 283
[9] Zhang Z. The EIS study of corrosion behavior of epoxy and zinc-rich composite coatings under a few corrosion environments [D]. Beijing: Beijing University of Chemical Technology, 2008
[9] (张智. 环氧和富锌两类复合涂层在几种腐蚀环境中失效行为的EIS研究 [D]. 北京: 北京化工大学, 2008)
[10] Sawant S S, Venkat K, Wagh A B. Corrosion of metals and alloys in the coastal and deepwaters of the Arabian Sea and the bay of Bengal[J]. Indian J. Technol., 1993, 31(12): 862
[11] Fu X L, Ma L, Yan Y G, et al. Effect of dissolved oxygen on corrosion behavior of hull steel in seawater[J]. Corros. Prot., 2010, 31(12): 942
[11] (傅晓蕾, 马力, 闰永贵等. 溶解氧浓度对船体钢在海水中腐蚀行为的影响[J]. 腐蚀与防护, 2010, 31(12): 942)
[12] Xu L K, Li W J, Chen G Z. Test technology of deep corrosion[J]. Mar. Sci., 2005, 29(7): 1
[12] (许立坤, 李文军, 陈光章. 深海腐蚀试验技术[J]. 海洋科学, 2005, 29(7): 1)
[13] Wang J, Meng J, Tang X, et al. Corrosion behavior of steel assessment techniques in deep ocean[J]. J. Chin. Soc. Corros. Prot., 2007, 27(1): 1
[13] (王佳, 孟洁, 唐晓等. 深海环境钢材腐蚀行为评价技术[J]. 中国腐蚀与防护学报, 2007, 27(1): 1)
[14] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep-sea environment[J]. Corros. Sci. Prot. Technol., 2010, 22(1): 47
[14] (周建龙, 李晓刚, 程学群等. 深海环境下金属及合金材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2010, 22(1): 47)
[15] Schumacher M. Seawater Corrosion Handbook [M]. New Jersey:Park Ridge, 1979
[16] Venkatesan R. Studies on corrosion of some structural materials in deep sea environm-ent [D]. Bengaluru: India Department of Metallurgy India Institute of Science, 2000
[17] Tang X, Wang J, Li Y. Influence of the corrosion rate of A3 steel sea water flow on[J]. Mar. Sci., 2005, 29(7): 26
[17] (唐晓, 王佳, 李焰. 海水流动对A3钢腐蚀速度的影响[J]. 海洋科学, 2005, 29(7): 26)
[18] Wang Y Y. Corrosion behavior of aluminum alloy in flowing seawater[J]. Equip. Environ. Eng., 2005, 2(6): 72
[18] (王曰义. 铝合金在流动海水中的腐蚀性为[J]. 装备环境工程, 2005, 2(6): 72)
[19] Duan J Z, Ma S D, Huang Y L. Study on regional seabed sediment induced corrosion[J]. Corros. Sci. Technol. Prot., 2001, 13(1): 37
[19] (段继周, 马士德, 黄彦良. 区域性海底沉积物腐蚀研究进展[J]. 腐蚀科学与防护技术, 2001, 13(1): 37)
[20] Fischer K P. Cathodic protection in salinemud containing sul-fate reducing bacteria[J]. Mater. Perform., 1981, 20(10): 41
[21] Castaneda H, Benetton X D. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions[J]. Corros. Sci., 2008, 50: 1169
[22] Rao T S, Kora A J, Anupkumar B, et al. Pitting corrosion of titanium by a fresh waterstrain of sulphate reducing baeteria (Desulfovibrio vulgaris)[J]. Corros. Sci., 2005, 47: 1071
[23] Shalaby H M, Hasan A A, Sabti F A. Effects of inorganic sulphide and ammonia on microbial corrosion behavior of 70Cu-30Ni alloy in seawater[J]. Br. Corros. J., 1999, 34(4): 292
[24] Dexter S C. Effects of variations in seawater upon the corrosion of aluminum[J]. Corrosion, 1980, 36(8): 423
[25] Zheng J Y. Marine biofouling and corrosion of materials[J]. J. Chin. Soc. Corros. Prot., 2010, 30(2): 171
[25] (郑纪勇. 海洋生物污损与材料腐蚀[J]. 中国腐蚀与防护学报, 2010, 30(2): 171)
[26] Cao G L, Li G M, Chang W S, et al. Effects of pH value and dissolved oxygen on pit initiation behavior of mild steel[J]. Equip. Environ. Eng., 2009, 6(6): 9
[26] (曹国良, 李国民, 常万顺等. pH值和溶解氧对低碳钢点蚀诱发的影响[J]. 装备环境工程, 2009, 6(6): 9)
[27] Guo W M, Li W J. Significant progress on the development of deep-sea environment corrosion test device[J]. Equip. Environ. Eng., 2006, 3(6): 60
[27] (郭为民, 李文军. 深海环境腐蚀试验装置研制取得重大进展[J]. 装备环境工程, 2006, 3(6): 60)
[28] Pekka P. Effect of deep sea environment on corrosion of some aluminum alloys [R]. Finland VTT Offsetpaino: Espoo Research Reports 724, 1991: 17
[29] Zhang Y, Lu Y, Zhang Y. Research on pitting of carbon steel caused by microorganisms[J]. China Offshore Oil Gas, 2012, 24(6): 66
[29] (张颖, 陆原, 张勇等. 微生物致碳钢点蚀试验研究[J]. 中国海上油气, 2012, 24(6): 66)
[30] Venkatesan R, Venkatasamy M A, Bhaskaran T A, et al. Corrosion of ferrous alloys in deep sea environments[J]. Br. Corros. J., 2002, 37(4): 257
[31] Schumacher ed,translated by Li D C,Yang Y,et al. Seawater Corrosion Manual[M]. Beijing: National Defense Industry Press, 1985
[31] (舒马赫编,李大超,杨荫等译. 海水腐蚀手册[M]. 北京: 国防工业出版社, 1985)
[32] Yang Y G,Zhang T,Shao Y W,et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
[33] Logan H L. Studies of hot salt cracking of the titanium-8Al-1Mo-1V alloy [A]. Proce-edings of Conference on Fundamental Aapects of Stress Corrosion Cracking [C]. Houston, Texas: Engineers National Association of Corrosion, 1969: 662
[34] Zheng J Q. Research of progress of pitting corrosion of stainless steel in simulated deep-sea environment [D]. Zhenjiang: Jiangsu University of Science and Technology, 2011
[34] (郑家青. 模拟深海环境下不锈钢点蚀性能研究 [D]. 镇江: 江苏科技大学, 2011)
[35] Reinhart F M. Corrosion of Materials in Hydrospace [R]. Naval Civil Engineering Lab Port HUENEME CA, 1966
[36] Wang W W, Guo W M, Zhang H X. Research on the corrosion of stainless steel in deep ocean[J]. Equip. Environ. Eng., 2010, 7(5): 79
[36] (王伟伟, 郭为民, 张慧霞. 不锈钢深海腐蚀研究[J]. 装备环境工程, 2010, 7(5): 79)
[37] Peng W C, Hou J, Guo W M. Research progress on the corrosion of aluminum alloy in deep ocean[J]. Develop. Appl. Mater., 2010,25(1): 59
[37] (彭文才, 侯健, 郭为民. 铝合金深海腐蚀研究进展[J]. 材料开发与应用, 2010, 25(1): 59)
[38] King R A, Miller J D A, Smith J S. Corrosion of mild steel by ironsulfides[J]. Br. Corros. J., 1973, (8): 137
[39] Duan J Z. Microbiologically influenced corrosion of steels in sea water and seamud containing sulfate-reducing bacterial [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2003
[39] (段继周. 海水和海泥环境中厌氧细菌对海洋用钢微生物腐蚀行为的影响 [D]. 北京: 中国科学院研究生院, 2003)
[40] Feng L C, Qiao B, He Y Q, et al. Development of ceramic matrix composite used in deep-sea environment[J]. Mater. Heat Treat., 2012, 41(22): 132
[40] (冯立超, 乔斌, 贺毅强等. 深海装备材料之陶瓷基复合材料的研究进展[J]. 材料热处理技术, 2012, 41(22): 132)
[41] Elisabeth M D, Li D Y, Randall T I. A peptide-stainless steel reaction that yields a new bioorganic-metal state of matter[J]. Biomaterials, 2011, 32: 5311
[42] Lu X J, Xiang Z L, Liu H C, et al. Applied research on 3LPP anticorrosion structure used in submarine pipeline[J]. Petrol. Eng. Constr., 2010, 36(6): 15
[42] (吕喜军, 相政乐, 刘海超等. 3LPP防腐层在海底管道的应用研究[J]. 石油工程建设, 2010, 36(6): 15)
[43] Howell G R, Cheng Y F. Characterization of high performance composite coating for the northern pipeline application[J]. Prog. Org. Coat., 2007, 60(2): 148
[44] Huang Y L, Cao C N, Lin H C, et al. Investigation on SCC and SCC inhibition of AISI316 stainless steel in acidic chloride solution[J]. Corros. Sci. Prot. Technol., 1993, 5(3): 192
[44] (黄彦良, 曹楚南, 林海潮等. 缓蚀剂对316L不锈钢在酸性氯离子溶液中应力腐蚀开裂的作用[J]. 腐蚀科学与防护技术, 1993, 5(3): 192)
[45] Liu B. Study on the evaluation technique for the performance of anticorrosion coatings under deep sea environment[J]. Shanghai Coat., 2011, 49(5): 34
[45] (刘斌. 深海环境下防腐蚀涂料性能评价技术研究[J]. 上海涂料, 2011, 49(5): 34)
[46] Hu G. Study on submarine pipeline corrosion detection and corrosion protection [D]. Chongqing: Chongqing University, 2007
[46] (胡舸. 海底管线腐蚀检测与腐蚀预测的研究 [D]. 重庆: 重庆大学, 2007)
[47] Lee A K, Buehler M G, Newman D K. Influence of adual-species biofilm on the corros-ion of mild steel[J]. Corros. Sci., 2006, 48: 165
[48] Melehers R E. Probabilistic models of corrosion for reliability assessment and mainte-nance planning [A]. Proc 20th Int Conf OffShore Mechanics and Arctic Engineering [C]. NewYork: ASME International Press, 2001: 1
[1] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[12] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.