Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (2): 112-118    DOI: 10.11902/1005.4537.2013.220
  研究报告 本期目录 | 过刊浏览 |
SRB对X70钢在土壤模拟溶液中腐蚀行为的影响
刘彤, 张艳飞, 陈旭, 王丹, 陈宇, 王冠夫
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution
LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu
College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(3513 KB)   HTML
摘要: 

采用失重法、SEM、EDS微观分析方法和电化学阻抗技术研究了X70钢在有/无SRB的侵蚀性土壤模拟溶液中的腐蚀行为。结果表明,在无菌介质中,X70钢表面生成不具有保护性的腐蚀产物,其腐蚀速率随浸泡时间的延长而增大;在有菌介质中,钢表面形成致密的生物膜,对界面传质有一定的阻碍作用,从而减轻X70钢的腐蚀。腐蚀产物的吸附及S含量随浸泡时间的延长而增加,使得腐蚀产物膜疏松易脱落,促进了基体的腐蚀。无菌介质中腐蚀产物内层的稳定性与腐蚀产物的沉积及分布有关;而在有菌介质中,多孔的胞外聚合物对活化过程中的质量传输过程有一定阻碍作用。

关键词 X70钢侵蚀性阴离子SRB生物膜腐蚀行为    
Abstract:The corrosion behavior of X70 steel was studied in a simulated soil solution with and without sulfate-reducing bacteria (SRB) by means of weight-loss measurement, SEM-EDS analysis and electrochemical impedance spectroscopy (EIS). The results showed that the corrosion rate increased with time in the solution without SRB, while the corrosion product film was loose and non-protective. In the solution with SRB, however, a compact and homogeneous biofilm formed on the steel surface, which could suppress the mass transfer so that to mitigate the steel corrosion, whilst the corrosion product film became loose and apt to spall because of the increasing amount of absorbed substance and sulfide in the corrosion product with time, in consequence the corrosion of the steel substrate was further promoted. The stability of the inner portion of the corrosion product film was related to the distribution of deposits on the steel in the solution without SRB. The porous extracellular polymeric substances (EPS) formed on the steel in the solution with SRB played a role in barrier action to the mass transfer during the activated process.
Key wordsX70 steel    corrosive anion    SRB    biofilm    corrosion behavior
    
ZTFLH:  TG174  
基金资助:国家自然科学基金项目(51201009)和辽宁省自然科学基金项目(2013020078)资助
通讯作者: 陈旭,E-mail:cx0402@sina.com   
作者简介: 刘彤,女,1988年生,硕士生,研究方向为金属腐蚀与防护

引用本文:

刘彤, 张艳飞, 陈旭, 王丹, 陈宇, 王冠夫. SRB对X70钢在土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 112-118.
LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu. Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution. Journal of Chinese Society for Corrosion and protection, 2014, 34(2): 112-118.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.220      或      https://www.jcscp.org/CN/Y2014/V34/I2/112

[1] Gerard M, Alfons J M S. The ecology and biotechnology of sulphate reducing bacteria [J]. Nat. Rev. Microbiol., 2008, 6(6): 441-454
[2] Wan Y, Zhang D, Liu H Q, et al. Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions [J]. Electrochim. Acta, 2010, 55(5): 1528-1534
[3] Videla H A, Mele M F L, Brankevich G. Assessment of corrosion and microfouling of several metals in polluted seawater [J]. Corros. Sci., 1988, 44(7): 423-426
[4] Souad B, Mohamed A L, Samir H. Effect of biofilm on naval steel corrosion in natural seawater [J]. J. Solid State Electrochem., 2011, 15(3): 525-537
[5] Beech I B, Zinkevitch V, Tapper R, et al. Study of the interaction of sulphate-reducing bacteria exopolymers with iron using X-ray photoelectron spectroscopy and time-of-flight secondary ionisation mass spectrometry [J]. J. Microbiol. Methods., 1999, 36(1/2): 3-10
[6] Fan Y J, Pi Z B, Hua P, et al. Microbial corrosion and its research methods [J]. J. Mater. Prot., 2001, 34(5): 28-30
(樊友军, 皮振邦, 华萍等. 微生物腐蚀的作用机制与研究方法现状 [J]. 材料保护, 2001, 34(5): 28-30)
[7] Florian M. The interaction of bacteria and metal surfaces [J]. Electrochim. Acta, 2007, 52(27): 7670-7680
[8] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54: 22-28
[9] Beech I B. Sulfate-reducing bacteria in biofilms on metallic materials and corrosion [J]. Microbiol. Today, 2003, 30: 115-117
[10] Sosa E, Garcia-Arriaga V, Castaneda H. Effect of biofilm on naval steel corrosion in natural seawater [J]. Electrochim. Acta, 2006, 51: 1855-1863
[11] Liu H F, Xu L M, Zheng J S. Effect of biofilm on corrosion of carbon steel [J]. J. Chin. Soc. Corros. Prot., 2000, 20(1): 41-46
(刘宏芳, 许立铭, 郑家燊. SRB生物膜与碳钢腐蚀的关系 [J]. 中国腐蚀与防护学报, 2000, 20(1): 41-46)
[12] Zhao Y L, Liu W, Lu M X. Effect of soaking time on SRB electrochemical corrosion behavior of X60 Steel [J]. Equip. Environ. Eng., 2007, 4(3): 53-57
(赵艳亮, 柳伟, 路民旭. 浸泡时间对X60钢SRB电化学腐蚀行为影响研究 [J]. 装备环境工程, 2007, 4(3): 53-57)
[13] Homero C, Xochitl D B. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions [J]. Corros. Sci., 2008, 50(4): 1169-1183
[14] Jones D A, Amy P S. A thermodynamic interpretation of microbiologically influenced corrosion [J]. Corros. Sci., 2002, 58(8): 638-645
[15] Ornek D, Wood T K, Hsu C H, et al. Corrosion control using regenerative biofilms (CCURB) on brass in different media [J]. Corros. Sci., 2002, 44(10): 2291-2302
[16] Souad B, Mohamed A L, Samir H. Effect of biofilm on naval steel corrosion in natural seawater [J]. J. Solid. State. Electr., 2011, 15(3): 525-537
[1] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[2] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[8] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] 陈嘉晨,王忠维,乔利杰,岩雨. 机械摩擦磨损与电化学腐蚀在特殊环境中的作用机制[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[11] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[12] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[13] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[14] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.