Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 465-471    DOI: 10.11902/1005.4537.2013.203
  本期目录 | 过刊浏览 |
环境变迁对Q235和09CuPCrNi-A钢早期腐蚀行为的影响
吴军1, 王秀静1, 罗睿1, 张三平1(), 周建龙2
1. 武汉材料保护研究所 武汉 430030
2. 武汉双虎涂料有限公司 武汉 430035
Influence of Environmental Alternation on Early Stage Corrosion of Q235 and 09CuPCrNi-A Steel
WU Jun1, WANG Xiujing1, LUO Rui1, ZHANG Sanping1(), ZHOU Jianlong2
1. Wuhan Research Institute of Materials Protection, Wuhan 430030, China
2. Wuhan Twin Tigers Coatings Co., LTD, Wuhan 430035, China
全文: PDF(6433 KB)   HTML
摘要: 

通过现场曝晒实验,采用SEM,EDS,XRD及电化学测量方法研究了Q235碳钢和09CuPCrNi-A耐候钢在武汉城市大气和武汉石化环境中交叉曝晒180 d后的腐蚀行为和规律。结果表明:Q235碳钢和09CuPCrNi-A耐候钢在武汉大气和武汉石化环境中交叉曝晒早期锈层表面凹凸不平,多裂纹和孔隙。不同环境条件下,早期腐蚀形成的锈层对后期腐蚀会产生影响,环境的变化会影响锈层的演化。从腐蚀动力学和极化曲线结果来看,存在I武汉站连续曝晒<I武汉/石化交叉曝晒<I石化/武汉交叉曝晒<I石化站连续曝晒的关系。

关键词 Q235碳钢09CuPCrNi-A耐候钢大气腐蚀电化学    
Abstract

The corrosion behavior for carbon steel Q235 and weathering steel 09CuPCrNi-A has been studied by alternative field exposure in a site of urban atmosphere and a site of petrochemical environment at Wuhan metropolis for 180 d and then the steel samples were examined by means of SEM, EDS, XRD and electrochemistry measurement. The results show that the surface of the rust layer is non-uniform with many cracks and pores for the steels exposed both in Wuhan urban atmosphere and Wuhan petrochemical environment; the rust layer formed in the early stage will have an impact on that in the later stage; and the changes in the environment will affect the evolution of the rust layer. The corrosion kinetics and polarization curve results show that the free corrosion current densities of the steels measured after exposure may exist a ranking as follows: Isuccessionally exposure in Wuhan urban atmosphere<Iexposure in Wuhan urban atmosphere/Wuhan petrochemical environment<Iexposure in Wuhan petrochemical environment/Wuhan urban atmosphere<Isuccessionally exposure in Wuhan petrochemical environment.

Key wordsQ235 carbon steel    09CuPCrNi-A weathering steel    atmospheric corrosion    electrochemistry
    
ZTFLH:  TG174.4  
基金资助:国家自然科学基金项目(51131007)资助
作者简介: null

吴军,男,1979年生,硕士生,研究方向为材料的大气腐蚀与防护

引用本文:

吴军, 王秀静, 罗睿, 张三平, 周建龙. 环境变迁对Q235和09CuPCrNi-A钢早期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(5): 465-471.
Jun WU, Xiujing WANG, Rui LUO, Sanping ZHANG, Jianlong ZHOU. Influence of Environmental Alternation on Early Stage Corrosion of Q235 and 09CuPCrNi-A Steel. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 465-471.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.203      或      https://www.jcscp.org/CN/Y2014/V34/I5/465

图1  Q235钢和09CuPCrNi-A钢在不同环境下曝晒180 d后的表面微观腐蚀形貌
图2  Q235钢和09CuPCrNi-A钢在不同环境下曝晒180 d后的截面微观腐蚀形貌
图3  Q235钢和09CuPCrNi-A钢在不同环境下曝晒180 d的腐蚀速率
图4  Q235钢和09CuPCrNi-A钢在不同环境下曝晒180 d后的EDS结果
图5  Q235钢和09CuPCrNi-A钢在不同环境下曝晒180 d的XRD谱
Sampling site Q235 steel 09CuPCrNi-A steel
Ecorr / mVSCE Icorr/ μAcm-2 Ecorr / mVSCE Icorr / μAcm-2
Wu han (180 d) -592.952 105.4 -576.699 94.9
Wuhan (90 d)→Petrochemical (90 d) -558.834 128.4 -524.697 103.7
Petrochemical (90 d)→Wuhan (90 d) -585.754 165.3 -543.830 112.2
Petrochemical (180 d) -586.834 176.6 -531.746 118.2
表1  Q235钢和09CuPCrNi-A钢在不同环境下曝晒180 d的极化曲线拟合结果
图6  Q235钢和09CuPCrNi-A钢在不同环境下曝晒180 d的极化曲线
[1] Liu D X. Corrosin and Protection of Materials[M]. Xi'an: Northwestern Polytechnical Univetsity Press, 2010
[1] (刘道新. 材料的腐蚀与防护[M]. 西安: 西北工业大学出版社,2010)
[2] Ke W. Current investigation into corrosion cost in china[J]. Total Corros. Control, 2003, 17(1): 1-10
[2] (柯伟.中国工业与自然环境腐蚀调查[J]. 全面腐蚀控制, 2003, 17(1): 1-10)
[3] Li X G. Research progress and prospects of materials environmental corrosion[J]. Bull. Natl. Nat. Sci. Found. China, 2012, 5: 257-300
[3] (李晓刚. 我国材料自然环境腐蚀研究进展与展望[J]. 中国科学基金, 2012, 5: 257-300)
[4] Guedes S C, Garbatov Y, Zayed A, et al.Influence of environmental factors on corrosion of ship structures in marine atmosphere[J]. Corros. Sci., 2009, 51: 2014-2026
[5] De la Fuente D, Díaz I, Simancas J, et al.Long-term atmospheric corrosion of mild steel[J]. Corros. Sci., 2011, 53: 604-617
[6] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine,rural and industrial environments[J]. Corros.Sci., 1999, 41(9): 1687-1702
[7] Wang Z Y, Yu G C, Han W. A survey of the atmospheric corrosiveness of natural environments in china[J]. J. Chin. Soc. Corros. Prot., 2003, 24(8): 323-326
[7] (王振尧, 于国才, 韩薇. 我国自然环境大气腐蚀性调查[J]. 中国腐蚀与防护学报, 2003, 24(8): 323-326)
[8] Xiao Y D, Zhang S P, Cao X L, et al. Recent development in atmospheric corrosion study of materials in china[J]. Equip. Environ.Eng., 2005, 10(5): 3-7
[8] (萧以德, 张三平, 曹献龙等. 我国大气腐蚀研究进展[J]. 装备环境工程, 2005, 10(5): 3-7)
[9] Cao C N. Environmental Corrosion of Mateials in China[M]. Beijing: Chemical Industry Press, 2005: 1-3
[9] (曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社,2005: 1-3)
[10] Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000, 56(9): 935-941
[11] Nam N D, Kim M J, Jang Y W, et al. Effect of tin on the corrosion behavior of low-alloy steel in an acid chloride solution[J]. Corros. Sci., 2010, 52: 14-20
[12] Ma Y T, Li Y, Wang F H.Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci.,2009, 51: 997-1006
[13] Ke W, Dong J H. Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel[J].Acta Metall. Sin., 2010, 46(11): 1365-1378
[13] (柯伟, 董俊华. Mn-Cu钢大气腐蚀锈层演化规律及其耐候性的研究[J]. 金属学报, 2010, 46(11): 1365-1378)
[1] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[2] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[3] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[4] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[5] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[6] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[7] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[8] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[9] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[10] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[11] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[12] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[13] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.