Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 459-464    DOI: 10.11902/1005.4537.2013.197
  本期目录 | 过刊浏览 |
采用丝束电极技术研究液滴下Cu腐蚀行为
张彭辉1, 王燕华1(), 彭欣2, 刘在健1, 周媛媛1, 王佳1,3
1. 中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
2. 浙江大学 舟山海洋研究中心 舟山 316000
3. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Study of Corrosion Behavior of Copper Beneath a Droplet by Means of Wire Beam Electrode Technology
ZHANG Penghui1, WANG Yanhua1(), PENG Xin2, LIU Zaijian1, ZHOU Yuanyuan1, WANG Jia1,3
1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2. Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China
3. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3900 KB)   HTML
摘要: 

采用丝束电极方法结合电化学阻抗技术研究了Cu在0.6 mol/L NaCl液滴下的腐蚀行为。结果表明:液滴下Cu电极表面表现出明显的不均匀电流分布特征,开始时呈现中心阴极边缘阳极的分布,随腐蚀时间的延长电流分布会发生极性反转,呈现中心阳极边缘阴极的分布。对电极表面形貌及产物的分析结果表明,开始时液滴边缘区即有红棕色产物大量积累,而中心区氧化膜生成则较慢。随着腐蚀时间的延长,电极表面逐渐被红棕色氧化膜完全覆盖,中心区氧化膜开始破坏并生成绿色产物,其破坏程度强于边缘区。据此对液滴下Cu的腐蚀机理进行探究。

关键词 Cu丝束电极液滴电化学阻抗大气腐蚀    
Abstract

The corrosion behavior of copper beneath a droplet of 0.6 mol/L NaCl solution was studied by means of wire beam electrode technique combined with electrochemical impedance spectroscopy (EIS). The results show that the distribution of galvanic current remains negative at the center and positive at the periphery of copper surface covered by the droplet at the initial stage. And the polarity reversed with the extension of time, i.e. the positive one at the center and the negative one at the periphery. To study more comprehensively, the EIS measurement was conducted at an interval of 2 h for two copper wires selected separately at the center and the periphery, and the change of the local impedances was found consistent with that of the current distributions. Meanwhile, the surface morphology of the electrode and the composition of the corrosion products were also examined by using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). At the beginning, reddish brown oxide products formed much quickly and earlier at the periphery rather than at the center. Then, with the extension of time, the electrode surface was totally covered by corrosion products from the periphery to the center. But, the corrosion products film at the center was severely damaged and replaced by malachite green products, while that remained less destructed relatively at the edge. Further, the corrosion mechanism of copper beneath the droplet was explored that it was the formation and transformation of the corrosion products dominated the changes of the distribution of the corrosion current.

Key wordscopper    wire beam electrode    droplet    electrochemical impedance spectroscopy    atmospheric corrosion
    
ZTFLH:  O646  
基金资助:国家自然科学基金项目 (51131005和40906039)、山东省优秀中青年科学家奖励基金项目 (BS2012HZ021) 及山东省自然科学基金项目 (ZR2010DQ006) 资助
作者简介: null

张彭辉,男,1989年生,硕士生,研究方向为金属腐蚀与防护

引用本文:

张彭辉, 王燕华, 彭欣, 刘在健, 周媛媛, 王佳. 采用丝束电极技术研究液滴下Cu腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(5): 459-464.
Penghui ZHANG, Yanhua WANG, Xin PENG, Zaijian LIU, Yuanyuan ZHOU, Jia WANG. Study of Corrosion Behavior of Copper Beneath a Droplet by Means of Wire Beam Electrode Technology. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 459-464.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.197      或      https://www.jcscp.org/CN/Y2014/V34/I5/459

图1  50 μL NaCl液滴下铜丝束电极的表面电流分布
图2  50μL NaCl液滴下铜丝束电极表面腐蚀形貌
图3  液滴外空白丝、中心丝和边缘丝表面形貌变化
图4  中心72#丝和边缘83#丝的电化学阻抗谱
Time / h O
Center/Edge
Cu
Center/Edge
Cl
Center/Eedge
2 h 1.27/1.34 98.73/98.66 ---/---
6 h 5.89/7.90 93.93/92.10 0.18/---
12 h 5.65/4.24 93.48/95.42 0.87/0.34
24 h 9.55/7.58 87.72/91.43 2.73/0.99
表1  腐蚀不同时间电极表面各元素质量分数
图5  中心72#丝及边缘83#丝阻抗值倒数变化
[1] Liao X N, Cao F H, Zheng L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corros. Sci., 2011, 53(10): 3289-3298
[2] Huang H L, Guo X P, Zhang G A, et al.Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer[J]. Corros. Sci., 2011, 53(10): 3446-3449
[3] Huang H L, Dong Z H, Chen Z Y, et al.The effects of Cl- ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer[J]. Corros. Sci., 2011, 53(4): 1230-1236
[4] Huang H L, Guo X P, Zhang G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer[J]. Corros. Sci., 2011, 53(5): 1700-1707
[5] Liu Q, Wang Q J, Du Z Z. Study of the corrosion of copper in natural environment[J]. New Tech. New Pro., 2008, (8): 80-82
[5] (刘琼, 王庆娟, 杜忠泽. 铜在自然环境中的腐蚀研究[J]. 新技术新工艺, 2008, (8): 80-82)
[6] Liu Y Y, Wang W, Wang Y H, et al. Electrochemical characteristics of 304 stainless steel under a droplet of NaCl[J]. J Chin. Soc. Corros. Prot., 2012, 32: 28-33
[6] (刘圆圆, 王伟, 王燕华等.NaCl液滴下304不锈钢表面电化学性质研究[J]. 中国腐蚀与防护学报, 2012, 32: 28-33)
[7] Nishikata A, Ichihara Y, Tsuru T.An application of electrochemical impedance spectroscopy to atmospheric corrosion study[J]. Corros. Sci., 1995, 37(6): 897-911
[8] Nishikata A, Ichihara Y, Tsuru T.Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer[J]. Electrochim. Acta, 1996, 41(7/8): 1057-1062
[9] El-Mahdy G A. Atmospheric corrosion of copper under wet/dry cyclic conditions[J]. Corros. Sci., 2005, 47(6): 1370-1383
[10] Peng X, Wang J, Shan C, et al. Corrosion behavior of long-time immersed rusted carbon steel in flowing seawater[J]. Acta. Metall. Sin., 2012, 48: 1260-1266
[10] (彭欣, 王佳, 山川等. 带锈碳钢在流动海水中的长期腐蚀行为[J]. 金属学报, 2012, 48: 1260-1266)
[11] Zou Y, Zhen Y Y, Wang Y H, et al. Cathodic electrochemical behaviors of mild steel in seawater[J]. Acta. Metall. Sin., 2010, 46: 123-128
[11] (邹妍, 郑莹莹, 王燕华等. 低碳钢在海水中的阴极电化学行为[J]. 金属学报, 2010, 46: 123-128)
[12] Zhang X, Wang W, Wang J.A novel device for the wire beam electrode method and its application in the ennoblement study[J]. Corros. Sci., 2009, 51(6): 1475-1479
[13] Zhang D L, Wang W, Li Y. An electrode array study of electrochemical inhomogeneity of zinc in zinc/steel couple during galvanic corrosion[J]. Corros. Sci., 2010, 52(4): 1277-1284
[14] Tan Y J, Liu T, Aung N N. Novel corrosion experiments using the wire beam electrode:(III) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases[J]. Corros. Sci., 2006, 48(1): 53-66
[15] Zhong Q D, Zhang Z. Study of anti-contamination performance of temporarily protective oil coatings using wire beam electrode[J].Corros. Sci., 2002, 44(12): 2777-2787
[16] Zhong Q D. Study of corrosion behaviour of mild steel and copper in thin film salt solution using the wire beam electrode[J]. Corros. Sci., 2002, 44(5): 909-916
[17] Muster T H, Bradbury A, Trinchi A, et al. The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape[J]. Electrochim. Acta, 2011, 56(4): 1866-1873
[18] Wang W, Zhang X, Wang J. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method[J]. Electrochim. Acta, 2009, 54(23): 5598-5604
[19] Zhang X, Wang W, Wang J. Characterization of electrochemical heterogeneity of interface of an artificial biofilm/metal by means of a wire beam electrode[J]. Corros. Sci. Prot. Technol., 2009, 21: 242-244
[19] (张霞, 王伟, 王佳. 利用丝束电极技术研究模拟微生物膜/金属界面的电化学不均匀性[J]. 腐蚀科学与防护技术, 2009, 21: 242-244)
[20] Liao X N, Cao F H, Chen A N, et al. In-situ investigation of atmospheric corrosion behavior of bronze under thin electrolyte layers using electrochemical technique[J]. Trans. Nonferrous Met. Soc., 2012, 22(5): 1239-1249
[21] Glass G K, Page C L, Short N R, et al. The analysis of potentiostatic transients applied to the corrosion of steel in concrete[J]. Corros. Sci., 1997, 39(9): 1657-1663
[1] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[5] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[7] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[8] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[9] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[10] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[11] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[12] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[13] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[14] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[15] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.