Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (4): 295-300    DOI: 10.11902/1005.4537.2013.180
  论文 本期目录 | 过刊浏览 |
缝隙腐蚀研究进展及核电材料的缝隙腐蚀问题
陈东旭, 吴欣强, 韩恩厚
中国科学院金属研究所 中国科学院核用结构材料与安全性评价重点实验室 辽宁省核电材料安全与评价技术重点实验室沈阳110016
Research Progress of Crevice Corrosion and Crevice Corrosion Issues of Nuclear-grade Materials
CHEN Dongxu, WU Xinqiang, HAN En-Hou
Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Material, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(459 KB)   HTML
摘要: 综述了缝隙腐蚀的主要机理、模拟研究技术及影响因素,介绍了核电材料在实际服役过程中的缝隙腐蚀问题,讨论了高温高压水环境下缝隙腐蚀研究存在的主要问题以及进一步的研究方向。
关键词 缝隙腐蚀核电材料高温高压水    
Abstract:The relevant simulation techniques, influencing factors and mechanisms of crevice corrosion were summarized. The crevice corrosion issues of the nuclear-grade materials during service were reviewed. The status and main problems on crevice corrosion in high-temperature and high-pressure water environments have been discussed. The coming possible research topics and directions are also proposed.
Key wordscrevice corrosion    nuclear-grade material    high temperature and high pressure water
收稿日期: 2013-09-30     
ZTFLH:  TG172.82  
基金资助:国家重点基础研究发展计划项目 (2011CB610501)和国家科技重大专项课题 (2011ZX06004-009) 资助
通讯作者: 通讯作者:吴欣强,E-mail:xqwu@imr.ac.cn     E-mail: xqwu@imr.ac.cn
作者简介: 陈东旭,男,1984年生,博士生,研究方向为高温高压水缝隙腐蚀

引用本文:

陈东旭, 吴欣强, 韩恩厚. 缝隙腐蚀研究进展及核电材料的缝隙腐蚀问题[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300.
CHEN Dongxu, WU Xinqiang, HAN En-Hou. Research Progress of Crevice Corrosion and Crevice Corrosion Issues of Nuclear-grade Materials. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 295-300.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.180      或      https://www.jcscp.org/CN/Y2014/V34/I4/295

[1] Liu D X. Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 128-136 (刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 128-136)
[2] Cao C N. Theory of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2004: 276-287 (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2004: 276-287)
[3] Xiao J M, Cao C N. Theory of Material Corrosion [M]. Beijing: Chemical Industry Press, 2002: 44-47 (肖纪美, 曹楚南. 材料腐蚀学原理 [M]. 北京: 化学工业出版社, 2002: 44-47)
[4] Pickering H W. On the roles of corrosion products in local cell processes [J]. Corrosion, 1986, 42: 125-140
[5] Pickering H W, Frankenthal R P. Mechanism of localized corrosion of iron and stainless steel [J]. Electrochemical, 1972, 119: 1297-1310
[6] Pickering H W. The significance of the local electrode potential wit- hin pits, crevices and cracks [J]. Corros. Sci., 1989, 29: 325-341
[7] Shu H K, Faqeer F M, Pickering H W. Pitting on the crevice wall pr- ior to crevice corrosion [J]. Electrochim. Acta, 2011, 56: 1719-1728
[8] Kennell G F, Evitts R W, Heppner K L. A critical crevice solution and IR drop crevice corrosion model [J]. Corros. Sci., 2008, 50: 1716-1725
[9] Force B D, Pickering H W. A clearer view of how crevice corrosion occurs [J]. J. Miner. Met. Mater. Soc., 1995, 47: 22-27
[10] Suzuki T, Yamane M, Kitamura Y. Electrochemical testing method for stress corrosion cracking by separating crack anode from cathode [J]. Corrosion, 1973, 29: 70-74
[11] Lee Y H, Takehara Z, Yoshizawa S. The enrichment of hydrogen and chloride ions in the crevice corrosion of steels [J]. Corros. Sci., 1981, 21: 391-397
[12] Peterson M H, Lennox T J. Study of cathodic polarization and pH changes in metal crevices [J]. Corrosion, 1973, 29: 406-410
[13] Peterson M H, Lennox T J, Groover R E. A study of crevice corrosion in type-304 stainless steel [J]. Mater. Prot. Perform., 1970, 9: 23-26
[14] Brown B F, Fujii C T, Dahlberg E P. Methods for studying solution chemistry within stress corrosion cracks [J]. J. Electrochem., 1969,
[15] Sharland S M. A mathematical of the initiation of crevice corrosion in metals [J]. Corros. Sci., 1992, 33: 183-201
[16] ASTM G48-03. Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution [S]. 2009
[17] GB/T 13671-92. Stainless steels-Method of electrochemical test for crevice corrosion [S]. 1992
[18] Zhong Q D. Study on crevice corrosion of copper using wire beam electrode [J]. J. Chin. Soc. Corros. Prot., 1999, 19: 189-192 (钟庆东. 采用丝束电极研究金属的缝隙腐蚀 [J]. 中国腐蚀与防护学报, 1999, 19: 189-192)
[19] Klassen R D, Roberge P R, Hyatt C V. A novel approach to characterizing localized corrosion within a crevice [J]. Electrochim. Acta, 2001, 46: 3705-3713
[20] Na E Y. An electrochemical evaluation on the crevice corrosion of 430 stainless steel by micro capillary tubing method [J]. J. Mater. Sci., 2006, 41: 3465-3471
[21] Na E Y, Ko J Y, Baik S Y. Electrochemical evaluation of crevice corrosion of 430 ferritic stainless steel using the microcapillary tube technique [J]. Desalination, 2005, 186: 65-74
[22] Xu J, Wu X Q, Han E-H. Acoustic emission during the electrochemical corrosion of 304 stainless steel in H 2 SO 4 solution [J]. Corros. Sci., 2011, 53: 448-457
[23] Xu J, Wu X Q, Han E-H. Acoustic emission during pitting corrosion of 304 stainless steel [J]. Corros. Sci., 2011, 53: 1537-1546
[24] Fregonese M, Idrissi H, Mazille H, et al. Initiation and propagation steps in pitting corrosion of austenitic stainless steels: monitoring by acoustic emission [J]. Corros. Sci., 2001, 43: 627-641
[25] Jones R H, Friesel M A. Acoustic emission during pitting and transgranular crack initiation in type 304 stainless steel [J]. Corrosion, 1992, 48: 751-758
[26] Ungaro M L, Carranza R M, Rodriguez M A. Crevice corrosion study on alloy22 by electrochemical noise technique [J]. Procedia Mater. Sci., 2012, 1: 222-229
[27] Rauf A, Bogaerts W F. Monitoring of crevice corrosion with the electrochemical frequency modulation technique [J]. Electrochim.Acta, 2009, 54: 7357-7363
[28] Bosch R W, Hubrecht J, Bogaerts W F, et al. Electrochemical frequency modulation: A new electrochemical technique for online corrosion monitoring [J]. Corrosion, 2001, 57: 60-70
[29] Wang S. The crevice corrosion of stainless steel [D]. Edmonton: University of Alberta, 1994: 27-35
[30] Rosenfeld I L, Staehle K W. Localized corrosion [J]. Natl. Assoc. Corros. Eng., 1974, 3: 373
[31] Abdulsalam M I. Behaviour of crevice corrosion in iron [J]. Corros. Sci., 2005, 47: 1336-1351
[32] Chang H Y, Park Y S, Hwang W S. Initiation modeling of crevice corrosion in 316L stainless steels [J]. Mater. Proc. Technol., 2000, 103: 206-217
[33] Hu Q, Zhang G, Guo X P. The crevice corrosion behavior of stainless steel in sodium chloride solution [J]. Corros. Sci., 2011, 53: 4065-4072
[34] Brigham R J. The localized corrosion of stainless steel in high purity sulphate solutions [J]. Corrosion, 1987, 27: 545-549
[35] Yashiro H, Tanno K. The effect of electrolyte composition on the pitting and repassivation behavior of AISI 304 stainless steel at high temperature [J]. Corros. Sci., 1990, 31: 485-490
[36] Yashiro H, Tanno K, Hanayama H, et al. Effect of temperature on the crevice corrosion of type-304 stainless steel in chloride solution up to 250-degrees-C [J]. Corrosion, 1990, 46: 727-733
[37] Brigham R J, Tozer E W. Localized corrosion-resistance of Mn-substituted austenitic stainless steels effect of molybdenum and chromium [J]. Corrosion, 1976, 32: 274-276
[38] Vermilyea D A, Tedmon C S. A simple crevice corrosion theory [J]. J. Electrochem. Soc., 1970, 117: 437-440
[39] Lee Y H, Takehara Z, Yoshizawa S. The enrichment of hydrogen and chloride-ions in the crevice corrosion of steels [J]. Corros. Sci., 1981, 21: 391
[40] Kennell G F, Evitts R W. Crevice corrosion cathodic reactions and crevice scaling laws [J]. Electrochim. Acta, 2009, 54: 4696-4703
[41] Han D, Jiang Y M, Shi C, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. J. Mater. Sci., 2012, 47: 1018-1025
[42] Kwok C T, Man H C, Leung L K. Effect of temperature, pH and sulphide on the cavitation erosion behaviour of super duplex stainless steel [J]. Wear, 1997, 211: 84-93
[43] Pruitt N C, Sudarshan T S, Louthan M R. Influence of pH on the crevice corrosion and stress corrosion cracking behavior of 304 stainless steel [J]. J. Mater. Eng., 1988, 10: 99-108
[44] Lu B T, Luo J L, Lu Y C. Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries [J]. Electrochim. Acta, 2013, 87: 824-838
[45] Kain R M, Lee T S. Crevice corrosion behavior of stainless steel in seawater and related [J]. Corrosion, 1984, 40: 313-321
[46] Wang F P, Kang W L, Jing H M. The Theory, Method and Application of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2008: 114-118 (王凤平, 康万利, 敬和民. 腐蚀电化学原理方法及应用 [M]. 化学工业出版社, 2008: 114-118)
[47] Pessall N, Nurminen J I. Development of ferritic stainless steels for use in desalination plants [J]. Corrosion, 1974, 30: 381-392
[48] Bond A P, Dundas H J. Resistance of stainless steels to crevice corrosion in seawater [J]. Mater. Perform., 1984, 23: 39-43
[49] Lu Y C, Ives M B. The improvement of the localized corrosion resistance of stainless steel by cerium [J]. Corros. Sci., 1993, 34: 1773-1785
[50] Lu Y C, Ives M B. Chemical treatment with cerium to improve the crevice corrosion resistance of austenitic stainless steels [J]. Corros. Sci., 1995, 37: 145-155
[51] Engelhardt G R, Macdonald D, Millett P J. Transport processes in steam generator crevice 1:General corrosion model [J]. Corros. Sci., 1999, 41: 2165-2190
[52] Engelhardt G R, Macdonald D, Millett P J. Transport processes in steam generator crevice 2: A simplified method for estimating impurity accumulation rates [J]. Corros. Sci., 1999, 41: 2191-2211
[53] Abella J, Balachov I, Macdonald D D, et al. Transport processes in steam generator crevice 3:Experimental results [J]. Corros. Sci., 2002, 44: 191-205
[54] Tan J, Lu Y C, Xu J H, et al. Mass transfer characteristic in the formation stage of gas-liquid segmented flow in microchannel [J]. Chem. Eng. J., 2012, 185/186: 314-320
[1] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[2] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[3] 王长罡,魏洁,魏欣,穆鑫,薛芳,董俊华,柯伟,李国平. 几种超级不锈钢在模拟烟气脱硫环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 43-50.
[4] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[5] 向超,王家贞,付华萌,韩恩厚,张海峰,王俭秋,张志明. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
[6] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[7] 朱若林,张志明,王俭秋,韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[8] 马成, 彭群家, 韩恩厚, 柯伟. 核电结构材料应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 37-45.
[9] 谭季波,吴欣强,韩恩厚. 动态应变时效对核电材料环境致裂影响的研究现状与进展[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[10] 吴志斌,魏英华,李京,孙超. 溶液状态对模拟剥离涂层底部Q345钢阴极极化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(5): 369-374.
[11] 彭青姣,张志明,王俭秋,韩恩厚,柯伟. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 217-222.
[12] 杨佳星,赵平,孙成,许进. 硫酸盐还原菌对Q235钢缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2012, 32(1): 54-58.
[13] 徐松;吴欣强;韩恩厚;柯伟. 316Ti不锈钢在模拟核电高温高压水中的腐蚀疲劳裂纹断口研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 119-123.
[14] 陈旭;李晓刚;杜翠薇; 梁平. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 35-40.
[15] 闫茂成; 王俭秋; 韩恩厚; 柯伟 . 埋地管线剥离覆盖层下阴极保护的有效性[J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262 .