Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 37-45    DOI: 10.11902/1005.4537.2013.175
  综述 本期目录 | 过刊浏览 | 高级检索 |
核电结构材料应力腐蚀开裂的研究现状与进展
马 成 彭群家 韩恩厚 柯 伟
中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Review of Stress Corrosion Cracking of Structural Materials in Nuclear Power Plants
MA Cheng, PENG Qunjia, HAN En-Hou, KE Wei
State Key Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
下载:  HTML  PDF(1404KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 围绕应力腐蚀行为的实验研究方法、影响因素以及应力腐蚀机制的理论分析等几个方面综述了核电结构材料应力腐蚀研究的现状,讨论了研究中亟待解决的问题,指出了研究的发展方向与趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马成
彭群家
韩恩厚
柯伟
关键词:  核电结构材料  高温高压水  应力腐蚀  冷加工  焊接件    
Abstract: The structural materials used in light water reactors (LWR) such as nickel based alloys and stainless steels have been found to be susceptible to stress corrosion cracking (SCC) in high temperature water. In this review, we summarized the research progress and current status on SCC of the structural materials used in LWR in terms of experimental methods, factors influencing SCC and the mechanisms of SCC. The research hotspots like the influence of cold-working and the SCC of weld joints were discussed. Some of the challenges and perspectives for the research of SCC in the future were also briefly addressed.
Key words:  structural materials of light water reactor    high temperature water    stress corrosion cracking    cold working    weld joint
收稿日期:  2013-08-19                出版日期:  2014-02-20      发布日期:  2014-03-06      期的出版日期:  2014-02-20
ZTFLH:  TG174  
基金资助: 中国科学院“百人计划”项目资助
通讯作者:  彭群家,E-mail:qunjiapeng@imr.ac.cn   
作者简介:  马成,男,1988年生,硕士生,研究方向为核电结构材料的应力腐蚀
引用本文:    
马成, 彭群家, 韩恩厚, 柯伟. 核电结构材料应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 37-45.
MA Cheng,PENG Qunjia,HAN En-Hou,KE Wei. Review of Stress Corrosion Cracking of Structural Materials in Nuclear Power Plants. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 37-45.
链接本文:  
http://www.jcscp.org/CN/10.11902/1005.4537.2013.175  或          http://www.jcscp.org/CN/Y2014/V34/I1/37
[1] Staehle R, Gorman J. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion, 2003, 59(11): 931-994
Staehle R, Gorman J. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1 [J]. Corrosion, 2003, 59(11): 931-994
[2] Horn R M, Gordon G M, Ford F P, et al. Experience and assessment of stress corrosion cracking in L-grade stainless steel BWR internals[J]. Nucl. Eng. Des., 1997, 174(3): 313-325
Horn R M, Gordon G M, Ford F P, et al. Experience and assessment of stress corrosion cracking in L-grade stainless steel BWR internals[J]. Nucl. Eng. Des., 1997, 174(3): 313-325
[3] Andresen P L, Ford F P, Solomon H D, et al. Monitoring and modeling stress-corrosion and corrosion fatigue damage in nuclear-reactors [J]. JOM-J. Min. Met. Mat. Soc., 1990, 42(12): 7-11
Andresen P L, Ford F P, Solomon H D, et al. Monitoring and modeling stress-corrosion and corrosion fatigue damage in nuclear-reactors [J]. JOM-J. Min. Met. Mat. Soc., 1990, 42(12): 7-11
[4] Bamford W, Hall J. Cracking of alloy 600 nozzles and welds in PWRs: review of cracking events and repair service experience [A]. Proceedings of 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Warrendale, PA: TMS, 2005: 959-966
Bamford W, Hall J. Cracking of alloy 600 nozzles and welds in PWRs: review of cracking events and repair service experience [A]. Proceedings of 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Warrendale, PA: TMS, 2005: 959-966
[5] Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61(3): 735-758
Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61(3): 735-758
[6] EPRI. Steam Generator Progress Report [M]. Palo Alto, CA: Electric Power Research Institute, 2011
EPRI. Steam Generator Progress Report [M]. Palo Alto, CA: Electric Power Research Institute, 2011
[7] Crum J R, Nagashima T. Review of Alloy 690 Steam Generator Stu-dies [M]. LaGrange Park: American Nuclear Society, 1997
Crum J R, Nagashima T. Review of Alloy 690 Steam Generator Stu-dies [M]. LaGrange Park: American Nuclear Society, 1997
[8] Hwang S S, Kim H P, Lee D H, et al. The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead[J]. J. Nucl. Mater., 1999, 275(1): 28-36
Hwang S S, Kim H P, Lee D H, et al. The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead[J]. J. Nucl. Mater., 1999, 275(1): 28-36
[9] Peng Q J, Teysseyre S, Andresen P L, et al. Stress corrosion crack growth in type 316 stainless steel in supercritical water [J]. Corrosion, 2007, 63(11): 1033-1041
Peng Q J, Teysseyre S, Andresen P L, et al. Stress corrosion crack growth in type 316 stainless steel in supercritical water [J]. Corrosion, 2007, 63(11): 1033-1041
[10] Andresen P L, Emigh P W, Morra M M, et al. Effects of PWR primary water chemistry and deaerated water on SCC [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Houston, TX: NACE, 2005: 989-1008
Andresen P L, Emigh P W, Morra M M, et al. Effects of PWR primary water chemistry and deaerated water on SCC [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Houston, TX: NACE, 2005: 989-1008
[11] Andersen P L, Morra M M, Hickling J, et al. PWSCC of alloys 690, 52 and 152 [A]. Proceedings of the 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Toronto: CNS, 2007
Andersen P L, Morra M M, Hickling J, et al. PWSCC of alloys 690, 52 and 152 [A]. Proceedings of the 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Toronto: CNS, 2007
[12] Ritter S, Seifert H P. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water [J]. J. Nucl. Mater., 2008, 375(1): 72-79
Ritter S, Seifert H P. Effect of corrosion potential on the corrosion fatigue crack growth behaviour of low-alloy steels in high-temperature water [J]. J. Nucl. Mater., 2008, 375(1): 72-79
[13] Seifert H P, Ritter S, Shoji T, et al. Environmentally-assisted cracking behaviour in the transition region of an alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment [J]. J. Nucl. Mater., 2008, 378(2): 197-210
Seifert H P, Ritter S, Shoji T, et al. Environmentally-assisted cracking behaviour in the transition region of an alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment [J]. J. Nucl. Mater., 2008, 378(2): 197-210
[14] Was G S, Sung J K, Angeliu T M. Effects of grain-boundary chemistry on the intergranular cracking behavior of Ni-16Cr-9Fe in high-temperature water [J]. Metall. Mater. Trans., 1992, 23(12)A: 3343-3359
Was G S, Sung J K, Angeliu T M. Effects of grain-boundary chemistry on the intergranular cracking behavior of Ni-16Cr-9Fe in high-temperature water [J]. Metall. Mater. Trans., 1992, 23(12)A: 3343-3359
[15] Was G S, Rajan V B. The mechanism of intergranular cracking of Ni-Cr-Fe alloys in sodium tetrathionate [J]. Metall. Mater. Trans., 1987, 18(7)A: 1313-1323
Was G S, Rajan V B. The mechanism of intergranular cracking of Ni-Cr-Fe alloys in sodium tetrathionate [J]. Metall. Mater. Trans., 1987, 18(7)A: 1313-1323
[16] Bruemmer S M. Linking grain boundary structure and compositionto intergranular stress corrosion cracking of austenitic stainless steels[A]. Materials Research Society Symposium Proceedings [C]. Warrendale, PA: Materials Research Society; 2004: 101-110
Bruemmer S M. Linking grain boundary structure and compositionto intergranular stress corrosion cracking of austenitic stainless steels[A]. Materials Research Society Symposium Proceedings [C]. Warrendale, PA: Materials Research Society; 2004: 101-110
[17] Bruemmer S M, Was G S. Microstructural and microchemical mechanisms controlling intergranular stress-corrosion cracking in light-water-reactor systems [J]. J. Nucl. Mater., 1994, 216: 348-363
Bruemmer S M, Was G S. Microstructural and microchemical mechanisms controlling intergranular stress-corrosion cracking in light-water-reactor systems [J]. J. Nucl. Mater., 1994, 216: 348-363
[18] Peng Q J, Yamauchi H, Shoji T. Investigation of dendrite-boundary microchemistry in alloy 182 using auger electron spectroscopy analysis [J]. Metall. Mater. Trans., 2003, 34(9)A: 1891-1899
Peng Q J, Yamauchi H, Shoji T. Investigation of dendrite-boundary microchemistry in alloy 182 using auger electron spectroscopy analysis [J]. Metall. Mater. Trans., 2003, 34(9)A: 1891-1899
[19] Was G S, Lian K. Role of carbides in stress corrosion cracking resistance of alloy 600 and controlled-purity Ni-16%Cr-9%Fe in primary water at 360 ℃ [J]. Corrosion, 1998, 54: 675-688
Was G S, Lian K. Role of carbides in stress corrosion cracking resistance of alloy 600 and controlled-purity Ni-16%Cr-9%Fe in primary water at 360 ℃ [J]. Corrosion, 1998, 54: 675-688
[20] Leonard F, Cottis R A, Vaillant F, et al. Mechanistic studies of stress corrosion cracking of nickel-based alloys in high temperature high pressure PWR environment [A]. Proceedings of the 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. LaGrange Park, IL: American Nuclear Society, 2009: 45-54
Leonard F, Cottis R A, Vaillant F, et al. Mechanistic studies of stress corrosion cracking of nickel-based alloys in high temperature high pressure PWR environment [A]. Proceedings of the 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. LaGrange Park, IL: American Nuclear Society, 2009: 45-54
[21] Peng Q J, Hou J, Takeda Y, et al. Effect of chemical composition on grain boundary microchemistry and stress corrosion cracking in alloy 182 [J]. Corros. Sci., 2013, 67: 91-99
Peng Q J, Hou J, Takeda Y, et al. Effect of chemical composition on grain boundary microchemistry and stress corrosion cracking in alloy 182 [J]. Corros. Sci., 2013, 67: 91-99
[22] Bruemmer S M, Charlot L A, Henager C H. Microstructure and microdeformation effects on IGSCC of alloy-600 steam-generator tubing [J]. Corrosion, 1988, 44(11): 782-788
Bruemmer S M, Charlot L A, Henager C H. Microstructure and microdeformation effects on IGSCC of alloy-600 steam-generator tubing [J]. Corrosion, 1988, 44(11): 782-788
[23] Kozaczek K J, Sinharoy A, Ruud C O, et al. Micromechanical modelling of microstress fields around carbide precipitates in alloy 600 [J]. Model Simul. Mater. Sci., 1995, 3(6): 829-843
Kozaczek K J, Sinharoy A, Ruud C O, et al. Micromechanical modelling of microstress fields around carbide precipitates in alloy 600 [J]. Model Simul. Mater. Sci., 1995, 3(6): 829-843
[24] Randle V. The coincidence site lattice and the 'sigma enigma' [J]. Mater. Charact., 2001, 47(5): 411-416
Randle V. The coincidence site lattice and the 'sigma enigma' [J]. Mater. Charact., 2001, 47(5): 411-416
[25] Lin P, Palumbo G, Erb U, et al. Influence of grain-boundary-character-distribution on sensitization and intergranular corrosion of alloy-600 [J]. Scr. Mater., 1995, 33(9): 1387-1392
Lin P, Palumbo G, Erb U, et al. Influence of grain-boundary-character-distribution on sensitization and intergranular corrosion of alloy-600 [J]. Scr. Mater., 1995, 33(9): 1387-1392
[26] Randle V. Electron backscatter diffraction: strategies for reliable data acquisition and processing [J]. Mater. Charact., 2009, 60(9): 913-922
Randle V. Electron backscatter diffraction: strategies for reliable data acquisition and processing [J]. Mater. Charact., 2009, 60(9): 913-922
[27] Gertsman V Y, Bruemmer S M. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys [J]. Acta Mater., 2001, 49(9): 1589-1598
[28] Lehockey E M, Brennenstuhl A M, Thompson I. On the relationship between grain boundary connectivity, coincident site lattice boundaries and intergranular stress corrosion cracking [J]. Corros. Sci., 2004, 46: 2383-2404
[27] Gertsman V Y, Bruemmer S M. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys [J]. Acta Mater., 2001, 49(9): 1589-1598
[29] Kumar M, King W E, Schwartz A J. Modifications to the microstructural topology in F.C.C. materials through thermomechanical processing [J]. Acta Mater., 2000, 48(9): 2081-2091
[28] Lehockey E M, Brennenstuhl A M, Thompson I. On the relationship between grain boundary connectivity, coincident site lattice boundaries and intergranular stress corrosion cracking [J]. Corros. Sci., 2004, 46: 2383-2404
[30] Terachi T, Yamada T, Miyamoto T, et al. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2012, 426(1-3): 59-70
[29] Kumar M, King W E, Schwartz A J. Modifications to the microstructural topology in F.C.C. materials through thermomechanical processing [J]. Acta Mater., 2000, 48(9): 2081-2091
[31] Jiao Z, Was G S. Impact of localized deformation on IASCC in austenitic stainless steels [J]. J. Nucl. Mater., 2011, 408(3): 246-256
[30] Terachi T, Yamada T, Miyamoto T, et al. SCC growth behaviors of austenitic stainless steels in simulated PWR primary water [J]. J. Nucl. Mater., 2012, 426(1-3): 59-70
[32] Couvant T, Moulart P, Legras L, et al. Effect of strain-hardening on stress corrosion cracking of AISI 304Lstainless steel in PWR environment at 360 degree [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Warrendale, PA: TMS, 2005: 1069-1079
[31] Jiao Z, Was G S. Impact of localized deformation on IASCC in austenitic stainless steels [J]. J. Nucl. Mater., 2011, 408(3): 246-256
[33] Kamaya M. Influence of bulk damage on crack initiation in low-cycle fatigue of 316 stainless steel [J]. Fatigue Fract. Eng. Mater. Struc., 2010, 33(2): 94-104
[32] Couvant T, Moulart P, Legras L, et al. Effect of strain-hardening on stress corrosion cracking of AISI 304Lstainless steel in PWR environment at 360 degree [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Warrendale, PA: TMS, 2005: 1069-1079
[34] Couvant T, Legras L, Pokor C, et al. Investigations on the mechanisms of PWSCC of strain hardened austenitic stainless steels [A]. Proceedings of the 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems [C]. Toronto, CN: CNS, 2007: 1-16
[33] Kamaya M. Influence of bulk damage on crack initiation in low-cycle fatigue of 316 stainless steel [J]. Fatigue Fract. Eng. Mater. Struc., 2010, 33(2): 94-104
[35] Hou J, Shoji T, Lu Z P, et al. Residual strain measurement and grain boundary characterization in the heat-affected zone of a weldjoint between alloy 690TT and alloy 52 [J]. J. Nucl. Mater., 2010, 397(1-3): 109-115
[34] Couvant T, Legras L, Pokor C, et al. Investigations on the mechanisms of PWSCC of strain hardened austenitic stainless steels [A]. Proceedings of the 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems [C]. Toronto, CN: CNS, 2007: 1-16
[36] Couvant T, Vaillant F. Initiation of PWSCC of weld alloy 182 [A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Warrendale, PA: TMS, 2011: 1141-1151
[37] Andresen P L, Ford F P. Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs [J]. Int. J. Pres. Ves. Pip., 1994, 59(1-3): 61-70
[35] Hou J, Shoji T, Lu Z P, et al. Residual strain measurement and grain boundary characterization in the heat-affected zone of a weldjoint between alloy 690TT and alloy 52 [J]. J. Nucl. Mater., 2010, 397(1-3): 109-115
[38] Andresen P L, Ford F P. Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel-alloys in aqueous systems [J]. Mater. Sci. Eng., 1988, A103(1): 167-184
[36] Couvant T, Vaillant F. Initiation of PWSCC of weld alloy 182 [A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Warrendale, PA: TMS, 2011: 1141-1151
[39] Peng Q J, Kwon J, Shoji T. Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water [J]. J. Nucl. Mater., 2004, 324(1): 52-61
[37] Andresen P L, Ford F P. Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs [J]. Int. J. Pres. Ves. Pip., 1994, 59(1-3): 61-70
[40] Shoji T, Lu Z, Murakami H. Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics [J]. Corros. Sci., 2010, 52(3): 769-779
[38] Andresen P L, Ford F P. Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel-alloys in aqueous systems [J]. Mater. Sci. Eng., 1988, A103(1): 167-184
[41] Andresen P L, Reid R, Wilson J. SCC mitigration of Ni alloys and weld metals by op-timizing dissolved hydrogen [A]. Proceedings of the 14th Internati-onal Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Warrendale, PA: TMS, 2009: 345-372
[39] Peng Q J, Kwon J, Shoji T. Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water [J]. J. Nucl. Mater., 2004, 324(1): 52-61
[42] Peng Q, Hou J, Sakaguchi K, et al. Effect of dissolved hydrogen on corrosion of inconel alloy 600 in high temperature hydrogenated water [J]. Electrochim. Acta, 2011, 56(24): 8375-8386
[40] Shoji T, Lu Z, Murakami H. Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics [J]. Corros. Sci., 2010, 52(3): 769-779
[43] Combrade P, Scott P, Foucault M, et al. Oxidation of Ni base alloys in PWR water oxide layers and associated damage to the base metal [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System Water Reactors [C]. Warrendale, PA: TMS, 2005: 883-890
[41] Andresen P L, Reid R, Wilson J. SCC mitigration of Ni alloys and weld metals by op-timizing dissolved hydrogen [A]. Proceedings of the 14th Internati-onal Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Warrendale, PA: TMS, 2009: 345-372
[44] Meng F, Lu Z, Shoji T, et al. Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations [J]. Corros. Sci., 2011, 53(8): 2558-2565
[42] Peng Q, Hou J, Sakaguchi K, et al. Effect of dissolved hydrogen on corrosion of inconel alloy 600 in high temperature hydrogenated water [J]. Electrochim. Acta, 2011, 56(24): 8375-8386
[45] Rocher A, Cassagne T, Durbec V, et al. The influence of chemical factors on the initiation of primary side IG-SCC in alloy 600 steam generator tubing [A]. Colloque International [C]. Fontevraud, 1994: 337-346
[43] Combrade P, Scott P, Foucault M, et al. Oxidation of Ni base alloys in PWR water oxide layers and associated damage to the base metal [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System Water Reactors [C]. Warrendale, PA: TMS, 2005: 883-890
[46] Norring K. Influence of LiOH and H2 on Primary side IGSCC of Alloy 600 Steam Generator Tubes [M]. Studsvik AB: Studsvik Energy, 1990
[44] Meng F, Lu Z, Shoji T, et al. Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations [J]. Corros. Sci., 2011, 53(8): 2558-2565
[47] Jacko R, Economy G, Pement F. The influence of dissolved hydrogen on primary water stress corrosion cracking of alloy 600 at PWR steam generator operating temperatures [A]. Proceedings of the 5th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. LaGrange Park, IL: American Nuclear Society, 1992: 613-620
[45] Rocher A, Cassagne T, Durbec V, et al. The influence of chemical factors on the initiation of primary side IG-SCC in alloy 600 steam generator tubing [A]. Colloque International [C]. Fontevraud, 1994: 337-346
[48] Cassange T, Fleury S, Vaillant F, et al. An update on the influence of hydrogen on the PWSCC of nickel base alloys in high temperature water [A]. Proceedings of the 9th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. LaGrange Park, IL: American Nuclear Society, 1997: 307-315
[46] Norring K. Influence of LiOH and H2 on Primary side IGSCC of Alloy 600 Steam Generator Tubes [M]. Studsvik AB: Studsvik Energy, 1990
[49] Rebak R B, Szklarskasmialowska Z. Influence of stress intensity and loading mode on IASCC of alloy 600 in primary water of pressurized water reactors [J]. Corrosion, 1994, 50(5): 378-393
[47] Jacko R, Economy G, Pement F. The influence of dissolved hydrogen on primary water stress corrosion cracking of alloy 600 at PWR steam generator operating temperatures [A]. Proceedings of the 5th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. LaGrange Park, IL: American Nuclear Society, 1992: 613-620
[50] Andresen P L, Hickling J, Ahluwalia A, et al. Effects of hydrogen on stress corrosion crack growth rate of nickel alloys in high-temperature water [J]. Corrosion, 2008, 64(9): 707-720
[48] Cassange T, Fleury S, Vaillant F, et al. An update on the influence of hydrogen on the PWSCC of nickel base alloys in high temperature water [A]. Proceedings of the 9th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. LaGrange Park, IL: American Nuclear Society, 1997: 307-315
[51] Hwang S S, Kim H P, Lim Y S, et al. Transgranular SCC mechanism of thermally treated alloy 600 in alkaline water containing lead [J]. Corros. Sci., 2007, 49(10): 3797-3811
[49] Rebak R B, Szklarskasmialowska Z. Influence of stress intensity and loading mode on IASCC of alloy 600 in primary water of pressurized water reactors [J]. Corrosion, 1994, 50(5): 378-393
[52] Agrawal A K, Paine J P N. Lead cracking of alloy 600-a review [A]. Proceedings of the 4th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Houston, TX: NACE, 1989: 7-1-7-17
[50] Andresen P L, Hickling J, Ahluwalia A, et al. Effects of hydrogen on stress corrosion crack growth rate of nickel alloys in high-temperature water [J]. Corrosion, 2008, 64(9): 707-720
[53] Yang I J. Effect of sulphate and chloride ions on the crevice chemistry and stress corrosion cracking of alloy 600 in high temperature aqueous solutions [J]. Corros. Sci., 1992, 33(1): 25-37
[51] Hwang S S, Kim H P, Lim Y S, et al. Transgranular SCC mechanism of thermally treated alloy 600 in alkaline water containing lead [J]. Corros. Sci., 2007, 49(10): 3797-3811
[54] Lu Y H, Peng Q J, Sato T, et al. An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water [J]. J. Nucl. Mater., 2005, 347(1/2): 52-68
[52] Agrawal A K, Paine J P N. Lead cracking of alloy 600-a review [A]. Proceedings of the 4th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Houston, TX: NACE, 1989: 7-1-7-17
[55] Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water [J]. Corros. Sci., 1998, 40(2/3): 337-370
[53] Yang I J. Effect of sulphate and chloride ions on the crevice chemistry and stress corrosion cracking of alloy 600 in high temperature aqueous solutions [J]. Corros. Sci., 1992, 33(1): 25-37
[56] Wang S C, Takeda Y, Shoji T, et al. Observation of the oxide film formed in high temperature water by applying electroless Ni-P coating [J]. J. Nucl. Sci. Technol., 2004, 41(7): 777-779
[54] Lu Y H, Peng Q J, Sato T, et al. An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water [J]. J. Nucl. Mater., 2005, 347(1/2): 52-68
[57] Terachi T, Fujii K, Arioka K. Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320 ℃ [J]. J. Nucl. Sci. Technol., 2005, 42(2): 225-232
[55] Stellwag B. The mechanism of oxide film formation on austenitic stainless steels in high temperature water [J]. Corros. Sci., 1998, 40(2/3): 337-370
[58] Soulas R, Cheynet M, Rauch E, et al. TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment [J]. J. Mater. Sci., 2013, 48(7): 2861-2871
[56] Wang S C, Takeda Y, Shoji T, et al. Observation of the oxide film formed in high temperature water by applying electroless Ni-P coating [J]. J. Nucl. Sci. Technol., 2004, 41(7): 777-779
[59] Kuang W J, Wu X Q, Han E-H. Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water [J]. Corros. Sci., 2012, 63: 259-266
[57] Terachi T, Fujii K, Arioka K. Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at 320 ℃ [J]. J. Nucl. Sci. Technol., 2005, 42(2): 225-232
[60] Kuang W J, Han E-H, Wu X Q, et al. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water [J]. Corros. Sci., 2010, 52(11): 3654-3660
[58] Soulas R, Cheynet M, Rauch E, et al. TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment [J]. J. Mater. Sci., 2013, 48(7): 2861-2871
[61] Kuang W J, Wu X Q, Han E-H. The oxidation behaviour of 304 stainless steel in oxygenated high temperature water [J]. Corros. Sci., 2010, 52(12): 4081-4087
[59] Kuang W J, Wu X Q, Han E-H. Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water [J]. Corros. Sci., 2012, 63: 259-266
[62] Li X H, Wang J Q, Han E-H, et al. Corrosion behaviour for alloy 690 and alloy 800 tubes in simulated primary water [J]. Corros. Sci., 2013, 67: 169-178
[60] Kuang W J, Han E-H, Wu X Q, et al. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water [J]. Corros. Sci., 2010, 52(11): 3654-3660
[63] Liu X H, Wu X Q, Han E-H. Influence of Zn injection on characteristics of oxide film on 304 stainless steel in borated and lithiated high temperature water [J]. Corros. Sci., 2011, 53(10): 3337-3345
[61] Kuang W J, Wu X Q, Han E-H. The oxidation behaviour of 304 stainless steel in oxygenated high temperature water [J]. Corros. Sci., 2010, 52(12): 4081-4087
[64] Ziemniak S E, Hanson M. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water [J]. Corros. Sci., 2002, 44(10): 2209-2230
[62] Li X H, Wang J Q, Han E-H, et al. Corrosion behaviour for alloy 690 and alloy 800 tubes in simulated primary water [J]. Corros. Sci., 2013, 67: 169-178
[65] Neves C F C, Alvial G M, Schvartzman M M A, et al. Characterisation of oxide films formed on alloy 600 in simulated PWR primary water [J]. Energ. Mat., 2008, 3(2): 126-131
[63] Liu X H, Wu X Q, Han E-H. Influence of Zn injection on characteristics of oxide film on 304 stainless steel in borated and lithiated high temperature water [J]. Corros. Sci., 2011, 53(10): 3337-3345
[66] Liu J H, Mendonca R, Bosch R W, et al. Characterization of oxide films formed on alloy 182 in simulated PWR primary water [J]. J. Nucl. Mater., 2009, 393(2): 242-248
[64] Ziemniak S E, Hanson M. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water [J]. Corros. Sci., 2002, 44(10): 2209-2230
[67] Machet A, Galtayries A, Marcus P, et al. XPS study of oxides formed on nickel-base alloys in high-temperature and high-pressure water [J]. Surf. Interface Anal., 2002, 34(1): 197-200
[65] Neves C F C, Alvial G M, Schvartzman M M A, et al. Characterisation of oxide films formed on alloy 600 in simulated PWR primary water [J]. Energ. Mat., 2008, 3(2): 126-131
[68] Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49(22/23): 3957-3964
[66] Liu J H, Mendonca R, Bosch R W, et al. Characterization of oxide films formed on alloy 182 in simulated PWR primary water [J]. J. Nucl. Mater., 2009, 393(2): 242-248
[69] Panter J, Viguier B, Cloue J M, et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600 [J]. J. Nucl. Mater., 2006, 348(1/2): 213-221
[67] Machet A, Galtayries A, Marcus P, et al. XPS study of oxides formed on nickel-base alloys in high-temperature and high-pressure water [J]. Surf. Interface Anal., 2002, 34(1): 197-200
[70] Zhang Z M, Wang J Q, Han E-H, et al. Influence of dissolved oxygen on oxide films of alloy 690TT with different surface status in simulated primary water [J]. Corros. Sci., 2011, 53(11): 3623-3635
[68] Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49(22/23): 3957-3964
[71] Huang F, Wang J, Han E-H, et al. Microstructural characteristics of the oxide films formed on alloy 690 in pure and primary water at 325 ℃ [J]. Corros. Sci., 2013, 76: 52-59
[69] Panter J, Viguier B, Cloue J M, et al. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600 [J]. J. Nucl. Mater., 2006, 348(1/2): 213-221
[72] Vermilye D A. A theory for propagation of stress-corrosion cracks in metals [J]. J. Electrochem. Soc., 1972, 119(4): 405-407
[70] Zhang Z M, Wang J Q, Han E-H, et al. Influence of dissolved oxygen on oxide films of alloy 690TT with different surface status in simulated primary water [J]. Corros. Sci., 2011, 53(11): 3623-3635
[73] Turnbull A. Modeling of environment assisted cracking [J]. Corros. Sci., 1993, 34(6): 921-960
[71] Huang F, Wang J, Han E-H, et al. Microstructural characteristics of the oxide films formed on alloy 690 in pure and primary water at 325 ℃ [J]. Corros. Sci., 2013, 76: 52-59
[74] Ford F P. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996, 52(5): 375-395
[72] Vermilye D A. A theory for propagation of stress-corrosion cracks in metals [J]. J. Electrochem. Soc., 1972, 119(4): 405-407
[75] Macdonald D D, Urquid-Macdonald M. A coupled environment model for stress-corrosion cracking in sensitized type-304 stainless-steel in LWR environments [J]. Corros. Sci., 1991, 32(1): 51-81
[73] Turnbull A. Modeling of environment assisted cracking [J]. Corros. Sci., 1993, 34(6): 921-960
[76] Rebak R B, Szklarskasmialowska Z. The mechanism of stress corrosion cracking of alloy 600 in high temperature water [J]. Corros. Sci., 1996, 38(6): 971-988
[74] Ford F P. Quantitative prediction of environmentally assisted cracking [J]. Corrosion, 1996, 52(5): 375-395
[77] Scenini F, Newman R C, Cottis R A, et al. Alloy oxidation studies related to PWSCC [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System Water Reactors [C]. Warrendale, PA: TMS, 2005: 891-902
[75] Macdonald D D, Urquid-Macdonald M. A coupled environment model for stress-corrosion cracking in sensitized type-304 stainless-steel in LWR environments [J]. Corros. Sci., 1991, 32(1): 51-81
[78] Bruemmer S M, Thomas L E. Insights into Environmental Degradation Mechanisms from High-Resolution Characterization of Crack Tips [M]. Warrendale: Minerals, Metals & Materials Society, 2001
[76] Rebak R B, Szklarskasmialowska Z. The mechanism of stress corrosion cracking of alloy 600 in high temperature water [J]. Corros. Sci., 1996, 38(6): 971-988
[79] Bruemmer S M, Thomas L. Insights into stress corrosion cracking mechanisms from high-resolution measurements of crack-tip structures and compositions [A]. MRS Proceedings [C]. Cambridge University Press, 2010: 1264-BB01-09
[77] Scenini F, Newman R C, Cottis R A, et al. Alloy oxidation studies related to PWSCC [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System Water Reactors [C]. Warrendale, PA: TMS, 2005: 891-902
[80] Kamaya M, Haruna T. Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel [J]. Corros. Sci., 2007, 49(8): 3303-3324
[78] Bruemmer S M, Thomas L E. Insights into Environmental Degradation Mechanisms from High-Resolution Characterization of Crack Tips [M]. Warrendale: Minerals, Metals & Materials Society, 2001
[81] Hou J, Peng Q J, Lu Z P, et al. Effects of cold working degrees on grain boundary characters and strain concentration at grain boundaries in alloy 600 [J]. Corros. Sci., 2011, 53(3): 1137-1142
[79] Bruemmer S M, Thomas L. Insights into stress corrosion cracking mechanisms from high-resolution measurements of crack-tip structures and compositions [A]. MRS Proceedings [C]. Cambridge University Press, 2010: 1264-BB01-09
[82] Lu B T, Chen Z K, Luo J L, et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel [J]. Electrochim. Acta, 2005, 50(6): 1391-1403
[80] Kamaya M, Haruna T. Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel [J]. Corros. Sci., 2007, 49(8): 3303-3324
[83] Peng Q J, Shoji T, Ritter S, et al. SCC behaviour in the transition region of an alloy 182-SA 508 Cl.2 dissimilar weld joint under simulated BWR-NWC conditions [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Warrendale, PA: TMS, 2005: 589-599
[81] Hou J, Peng Q J, Lu Z P, et al. Effects of cold working degrees on grain boundary characters and strain concentration at grain boundaries in alloy 600 [J]. Corros. Sci., 2011, 53(3): 1137-1142
[84] Kim J W, Lee K, Kim J S, et al. Local mechanical properties of alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320 ℃ [J]. J. Nucl. Mater., 2009, 384(3): 212-221
[82] Lu B T, Chen Z K, Luo J L, et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel [J]. Electrochim. Acta, 2005, 50(6): 1391-1403
[85] Lee H T, Wu J L. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding alloy 690 butt weldments [J]. Corros. Sci., 2009, 51(4): 733-743
[83] Peng Q J, Shoji T, Ritter S, et al. SCC behaviour in the transition region of an alloy 182-SA 508 Cl.2 dissimilar weld joint under simulated BWR-NWC conditions [A]. Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors [C]. Warrendale, PA: TMS, 2005: 589-599
[86] Peng Q J, Xue H, Hou J, et al. Role of water chemistry and microstructure in stress corrosion cracking in the fusion boundary region of an alloy 182-A533Blow alloy steel dissimilar weld joint in high temperature water [J]. Corros. Sci., 2011, 53(12): 4309-4317
[84] Kim J W, Lee K, Kim J S, et al. Local mechanical properties of alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320 ℃ [J]. J. Nucl. Mater., 2009, 384(3): 212-221
[87] Han E-H. Research trends on micro and nano-scale materials degradation in nuclear power plant [J]. Acta Metall. Sin., 2011, 47 (7): 769-776(韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究—进展与趋势 [J]. 金属学报, 2011, 47(7): 769-776)
[85] Lee H T, Wu J L. Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding alloy 690 butt weldments [J]. Corros. Sci., 2009, 51(4): 733-743
[86] Peng Q J, Xue H, Hou J, et al. Role of water chemistry and microstructure in stress corrosion cracking in the fusion boundary region of an alloy 182-A533Blow alloy steel dissimilar weld joint in high temperature water [J]. Corros. Sci., 2011, 53(12): 4309-4317
[1] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[2] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[3] 向超,王家贞,付华萌,韩恩厚,张海峰,王俭秋,张志明. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
[4] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.
[5] 郭跃岭,韩恩厚,王俭秋. 锻后热处理对核级316LN不锈钢在沸腾MgCl2溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[6] 朱若林,张志明,王俭秋,韩恩厚. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[7] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[8] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[9] 王海杰, 王佳, 彭欣, 山川. 钛合金在3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 75-80.
[10] 陈东旭, 吴欣强, 韩恩厚. 缝隙腐蚀研究进展及核电材料的缝隙腐蚀问题[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300.
[11] 王彬彬, 王振尧, 曹公望, 钟西舟, 柯伟. 受力的LY12和LC4铝合金在中国西部盐湖大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(3): 287-293.
[12] 王峰, 韦春艳, 黄天杰, 崔中雨, 李晓刚. H2S分压对13Cr不锈钢在CO2注气井环空环境中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(1): 46-52.
[13] 邢云颖, 刘智勇, 董超芳, 李晓刚. 16MnR钢在催化裂化再生环境中的应力腐蚀开裂研究[J]. 中国腐蚀与防护学报, 2014, 34(1): 59-64.
[14] 郝文魁, 刘智勇, 张新, 杜翠薇, 李晓刚, 刘翔. H2S浓度对35CrMo钢应力腐蚀开裂的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
[15] 梅华生, 王长朋, 张帷, 周漪, 杨王玲. 电化学充氢对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 388-394.
[1] Cui LIN,Xiaobin ZHAO,Yifei ZHANG. Research Progress on Cavitation-corrosion ofMetallic Materials[J]. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 11 -19 .
[2] LIU Haoyu, LIANG Xiaofeng, SHAO Yawei, MENG Guozhe,ZHANG Tao, WANG Fuhui. EFFECT OF HYDROSTATIC PRESSURE OF 3.5%NaCl SOLUTION ON THE CORROSION BEHAVIOR OF EPOXY COATING[J]. J Chin Soc Corr Pro, 2010, 30(5): 374 -378 .
[3] Shuangchen MA,Yue DENG,Wenlong WU,Yu TAN,Linan ZHANG,Feng CHAI,Panpan SUN,Xiaoni ZHANG. Corrosion Characteristics of Downstream Metal Material of Boiler System in Solution of By-product Ammonium Bisulfate from SCR Denitrification[J]. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 335 -342 .
[4] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 205 -212 .
[5] HUA Li, GUO Xingpeng, YANG Jiakuan. ELECTROCHEMICAL CORROSION BEHAVIOR AND DENDRITE GROWTH OF Sn-0.7Cu SOLDER ON FR-4 PRINTED CIRCUIT BOARD PLATED WITH Cu[J]. J Chin Soc Corr Pro, 2010, 30(6): 469 -474 .
[6] Jing Xv. Hdrogen-Attacked Crack Healing with Recovering heat Treatment of Dissected-Specimen in Vacuum Environment[J]. J Chin Soc Corr Pro, 2004, 24(4): 198 -202 .
[7] JIANG Qiong, MIAO Qiang, YAO Zhengjun, WEI Xiaoxin. MICROSTRUCTURE AND CORROSION RESISTANCE OF WATERBORNE Al-Zn-Si ALLOY COATING[J]. J Chin Soc Corr Pro, 2012, 32(4): 311 -316 .
[8] CHEN Qian, XIN Li, TENG Yingyuan, ZHU Shenglong, WANG Fuhui. EFFECT OF NITRIDE COATINGS ON THE CYCLIC OXIDATION BEHAVIOR OF TI6AL4V ALLOY[J]. J Chin Soc Corr Pro, 2012, 32(1): 7 -12 .
[9] ;. OXIDATION OF Ag-8Y DUAL-PHASE ALLOY in 105 and 10-15 Pa OXYGEN at 700℃[J]. J Chin Soc Corr Pro, 2001, 21(4): 200 -205 .
[10] Qihuan Tang. THE EFFECTS OF CHEMICAL COMPOSITION TOTHE ATMOSPHERIC CORROSION OF STEEL——GAINED FROM GREY CLUSTERING ANALYSIS[J]. J Chin Soc Corr Pro, 2003, 23(4): 239 -242 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed