Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (5): 389-398    DOI: 10.11902/1005.4537.2013.174
  本期目录 | 过刊浏览 |
Cu及其合金的大气腐蚀研究现状
齐东梅1, 成若义2, 杜小青1, 陈宇1, 张昭1(), 张鉴清1,3
1. 浙江大学化学系 杭州 310027
2. 海军工程大学 武汉 430033
3. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016
Review on Atmospheric Corrosion of Copper and Copper Alloys
QI Dongmei1, CHENG Ruoyi2, DU Xiaoqing1, CHEN Yu1, ZHANG Zhao1(), ZHANG Jianqing1,3
1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
2. Naval University of Engineering, PLA, Wuhan 430033, China
3. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(692 KB)   HTML
摘要: 

综述了Cu及其合金的大气腐蚀机理,重点介绍了影响Cu及其合金大气腐蚀的主要因素和几种常见的大气腐蚀研究方法,并对其今后的研究趋势进行了展望。

关键词 Cu铜合金大气腐蚀    
Abstract

The present situation of research on atmospheric corrosion of copper and its alloys and the relevant corrosion mechanism were summarized. The main influence factors, several common research methods of atmospheric corrosion of copper and its alloys were reviewed. Meanwhile, prospective points in the future for the study in this field were brought forward.

Key wordscopper    copper alloy    atmospheric corrosion
    
ZTFLH:  O646  
基金资助:国家自然科学基金项目 (51131005和21273199),材料环境腐蚀国家野外科学观测研究平台项目及嘉兴市精英引领计划项目资助
作者简介: null

齐东梅,女,1986年生,博士生,研究方向为金属腐蚀与防护

引用本文:

齐东梅, 成若义, 杜小青, 陈宇, 张昭, 张鉴清. Cu及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2014, 34(5): 389-398.
Dongmei QI, Ruoyi CHENG, Xiaoqing DU, Yu CHEN, Zhao ZHANG, Jianqing ZHANG. Review on Atmospheric Corrosion of Copper and Copper Alloys. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 389-398.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.174      或      https://www.jcscp.org/CN/Y2014/V34/I5/389

[1] Chen Z Y. Atmospheric Corrosion and Research Method of Copper[M]. Beijing: Science Press, 2011
[1] (陈卓元. Cu的大气腐蚀及其研究方法[M]. 北京: 科学出版社, 2011)
[2] Dante J F, Kelly R G. The evolution of the adsorbed solution layer during atmospheric corrosion and its effects on the corrosion rate of copper[J]. J. Electrochem. Soc., 1993, 140(7): 1890-1897
[3] Li X G,Dong C F,Xiao K,et al. The Early Atmospheric Corrosion Behavior and Mechanism of Metal[M]. Beijing: Science Press, 2009
[3] (李晓刚,董超芳,肖葵等. 金属大气腐蚀初期行为与机理[M]. 北京: 科学出版社, 2009)
[4] Leygraf C. Atmospheric Corrosion [M]. New York: Wiley-VCH, 2000
[5] Li Y K. Electrochemical behavior research of metal corrosion under thin electrolyte lay[D]. Qingdao: Ocean University of China, 2007
[5] (李亚坤. 薄液层下金属电化学腐蚀行为研究[D]. 青岛: 中国海洋大学, 2007)
[6] Xie X Y. Research on the testing technology of atmospheric corrosion of metallic materials[D]. Tianjin: Tianjin University, 2003
[6] (谢先宇. 金属材料大气腐蚀测试技术的研究[D]. 天津: 天津大学, 2003)
[7] Vernon W H J. A laboratory study of the atmospheric corrosion of metals[J]. Trans. Faraday Soc., 1931, 27: 255-277
[8] Sereda P J. Atmospheric factors affecting the corrosion of steel[J]. J. Ind. Eng. Chem., 1960, 52(2): 157-160
[9] Guttman H, Sereda P J. Measurement of Atmospheric Factors Affecting the Corrosion of Metals [M]. Baltimore: American Society for Testing and Materials, 1968
[10] Nassau K, Miller A E, Graedel T E. The reaction of simulated rain with copper, copper patina, and some copper compounds[J]. Corros. Sci., 1987, 27(7): 703-719
[11] Graedel T E. Copper patinas formed in the atmosphere-II. A qualitative assessment of mechanisms[J]. Corros. Sci., 1987, 27(7): 721-740
[12] Phipps P B P, Rice D W.The Role of Water in Atmospheric Corrosion[M]. San Jose: American Chemical Society, 1979
[13] Aastrup T, Wadsak M, Schreiner M, et al. Experimental in situ studies of copper exposed to humidified air[J]. Corros. Sci., 2000, 42(6): 957-967
[14] Samie F, Tidblad J, Kucera V, et al. Atmospheric corrosion effects of HNO3-influence of temperature and relative humidity on laboratory-exposed copper[J]. Atmos. Environ., 2007, 41(7): 1374-1382
[15] Watanabe M, Higashi Y, Tanaka T. Differences between corrosion products formed on copper exposed in Tokyo in summer and winter[J]. Corros. Sci., 2003, 45(7): 1439-1453
[16] Shi Y Y. The electrochemical studies of atmospheric corrosion of typical metals[D]. Hangzhou: Zhejiang University, 2008
[16] (施彦彦. 典型金属材料大气腐蚀的模拟电化学研究[D]. 杭州: 浙江大学, 2008)
[17] Zhang X Y, He W, Wallinder I O, et al. Determination of instantaneous corrosion rates and runoff rates of copper from naturally patinated copper during continuous rain events[J]. Corros. Sci., 2002 44(9): 2131-2151
[18] He W, Wallinder I O, Leygraf C. A laboratory study of copper and zinc runoff during first flush and steady-state conditions[J]. Corros. Sci., 2001, 43(1): 127-146
[19] Krätschmer A, Wallinder I O, Leygraf C. The evolution of outdoor copper patina[J]. Corros. Sci., 2002, 44(3): 425-450
[20] Huang H L, Dong Z H, Chen Z Y, et al. The effects of Cl- ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer[J]. Corros. Sci., 2011, 53(4): 1230-1236
[21] Liao X N, Cao F H, Zheng L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corros. Sci., 2011, 53(10): 3289-3298
[22] Sasaki T, Itoh J, Horiguchi Y, et al. Quantitative determination of corrosion products and adsorbed water on copper in humid air containing SO2 by IR-RAS measurements[J]. Corros. Sci., 2006, 48(12): 4339-4351
[23] Chawla S K, Payer J H. The early stage of atmospheric corrosion of copper by sulfur dioxide[J]. J. Electrochem. Soc., 1990, 137(1): 60-64
[24] Hernández R P B, Pászti Z, de Melo H G, et al. Chemical characterization and anticorrosion properties of corrosion products formed on pure copper in synthetic rainwater of Rio de Janeiro São Paulo [J]. Corros. Sci., 2010, 52(3): 826-837
[25] Lobnig R E, Frankenlhal R P, Siconolfi D J, et al. The effect of submicron ammonium sulfate particles on the corrosion of copper[J]. J. Electrochem. Soc., 1993, 140(7): 1902-1907
[26] Lobnig R E, Frankenlhal R P, Siconolfi D J, et al. Mechanism of atmospheric corrosion of copper in the presence of submicron ammonium sulfate particles at 300 and 373K[J]. J. Electrochem. Soc.1994, 141(11): 2935-2941
[27] Lobnig R E, Jankoski C A. Atmospheric corrosion of copper in the presence of acid ammonium sulfate particles[J]. J. Electrochem. Soc., 1998, 145(3): 946-956
[28] Samie F, Tidblad J, Kucera V, et al. Atmospheric corrosion effects of HNO3-method development and results on laboratory-exposed copper[J]. Atmos. Environ., 2005, 39(38): 7362-7373
[29] Samie F, Tidblad J, Kucera V, et al. Atmospheric corrosion effects of HNO3-Comparison of laboratory-exposed copper, zinc and carbonsteel[J]. Atmos. Environ., 2007, 41(23): 4888-4896
[30] Rice D W, Peterson P, Rigby E B, et al. Atmospheric corrosion of copper and silver[J]. J. Electrochem. Soc., 1981, 128(2): 275-283
[31] Tran T T M, Fiaud C, Sutter E M M, et al. The atmospheric corrosion of copper by hydrogen sulphide in underground conditions[J]. Corros. Sci., 2003, 45(12): 2787-2802
[32] Strandberg H, Johansson L G. Role of O3 in the atmospheric corrosion of copper in the presence of SO2[J]. J. Electrochem. Soc., 1997, 144(7): 2334-2341
[33] Zakipour S, Tidblad J, Leygraf C. Atmospheric corrosion effect of SO2 and O3 on laboratory exposed copper[J]. J. Electrochem. Soc., 1995, 142(3): 757-760
[34] Chen Z Y, Zakipour S, Persson D, et al. Combined effects of gaseous pollutants and sodium chloride particles on the atmospheric corrosion of copper[J]. Corrosion, 2005, 61(11): 1022-1034
[35] Rickett B I, Payer J H. Composition of copper tarnish products formed in moist air with trace levels of pollutant gas: sulfur dioxide and sulfur dioxide/nitrogen dioxide[J]. J. Electrochem. Soc., 1995, 142(11): 3713-3722
[36] Lindstrom R, Svensson J E, Johansson L G. The atmospheric corrosion of zinc in the presence of NaCl-the influence of carbon dioxide and temperature[J]. J. Electrochem. Soc., 2000, 147(5): 1751-1757
[37] Blücher D B, Lindström R, Svensson J E, et al. The effect of CO2 on the NaCl-induced atmospheric corrosion of aluminum[J]. J. Electrochem. Soc., 2001, 148(4): B127-B131
[38] Chen Z Y, Persson D, Samie F, et al. Effect of carbon dioxide on sodium chloride-induced atmospheric corrosion of copper[J]. J. Electrochem. Soc., 2005, 152(12): B502-B511
[39] Chen Z Y, Persson D, Nazarov A, et al. In situ studies of the effect of CO2 on the initial NaCl-induced atmospheric corrosion of copper[J]. J. Electrochem. Soc., 2005, 152(9): B342-B351
[40] Núñez L, Reguera E, Corvo F, et al. Corrosion of copper in seawater and its aerosols in a tropical island[J]. Corros. Sci., 2005, 47(2): 461-484
[41] Qu Q, Yan C W, Zhang L, et al. Synergism of NaCl and SO2 in the initial atmospheric corrosion of A3 steel[J]. Acta Metall. Sin., 2002, 38(10): 1062-1066
[41] (屈庆, 严川伟, 张蕾等. NaCl和SO2在A3钢初期大气腐蚀中的协同效应[J]. 金属学报, 2002, 38(10): 1062-1066)
[42] Tomashov H D. Translated by Hua B D,Yu B N,Cao C N,et al. Corrosion and Protection of Metals[M]. Beijing: China Industrial Press, 1965
[42] (Tomashov H D著. 华保定, 余柏年, 曹楚南等译. 金属腐蚀及其保护的理论[M]. 北京: 中国工业出版社, 1965)
[43] Sereda P J. Measurement of Surface Moisture (a progress report) [M]. Baltimore: American Society for Testing and Materials ,1958
[44] Sauerbrey G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrow wägung[J]. Zeitschrift für Physik, 1959 155: 206-222
[45] Kelvin L V. Contact electricity of metals[J]. Philos. Mag., 1898, 278(46): 82-120
[46] Zisman W A. A new method of measuring contact potential differences in metals[J]. Rev. Sci. Instrum., 1932, 3(7): 367-370
[47] Stratmann M. The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers-a new experimental technique[J]. Corros. Sci., 1987, 27(8): 869-872
[48] Li C. The initial corrosion behavior of Q235 steel under thin films[D]. Tianjin: Tianjin University, 2008
[48] (李超. Q235钢在模拟介质薄液膜下早期阶段的腐蚀行为[D]. 天津: 天津大学, 2008)
[49] Albani O, Huang S M, Oriani R A. Technical note: use of the kelvin probe technique to study corrosion by ionic particles in humid gases[J]. Corrosion, 1994, 50(5): 331-333
[50] Zou F, Han W. Electrochemical study of metals under thin electrolyte layer with kelvin probe method[J]. Corros. Sci. Prot. Technol., 1995, 7(3): 192-195
[50] (邹峰, 韩薇. 利用Kelvin探针进行金属薄液层下电化学测量[J]. 腐蚀科学与防护技术, 1995, 7(3): 192-195)
[51] Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-II. Experiment result[J]. Corros. Sci., 1990, 30(6/7): 698-714
[52] Chen Z Y, Zakipour S, Persson D, et al. Effect of sodium chloride particles on the atmospheric corrosion of pure copper[J]. Corrosion, 2004, 60(5): 479-491
[53] Zhang J Q. Electrochemical Measurement Technology[M]. Beijing: Chemical industry press, 2010
[53] (张鉴清. 电化学测试技术[M]. 北京: 化学工业出版社, 2010)
[54] Wang Y, Tang Y, Xie C S, et al. The applications of the electrochemical impedance spectroscopy in the materials researches[J]. Mater. Rev., 2011, 25(7): 5-8
[54] (王芸, 汤滢, 谢长生等. 电化学阻抗谱在材料研究中的应用[J]. 材料导报, 2011, 25(7): 5-8)
[55] Nishikata A, Ichihara Y, Hayashi Y, et al. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron[J]. J. Electrochem. Soc., 1997, 144(4): 1244-1252
[56] Nishikata A, Ichihara Y, Tsuru T. An application of electrochemical impedance spectroscopy to atmospheric corrosion study[J]. Corros. Sci., 1995, 37(6): 897-911
[57] Vilche J R, Varela F E, Codaro E N, et al. A survey of Argentinean atmospheric corrosion: II-Copper samples[J]. Corros. Sci., 1997, 39(4): 655-679
[58] Fu H T, Li Y, Wei W J, et al. The inhibition of AMT on bronze corrosion in 5% citric acid[J]. Acta Phys.-Chim. Sin., 2001, 17(7): 604-608
[58] (傅海涛, 李瑛, 魏无际等. AMT在青铜柠檬酸体系中的缓蚀行为及其机理[J]. 物理化学学报, 2001, 17(7): 604-608)
[59] Liu L, Hu J M, Zhang J Q, et al. Evaluation of protectiveness of organic coatings by means of high-frequency EIS measurement[J]. Corros. Sci. Prot. Technol., 2010, 22(4): 325-328
[59] (刘倞, 胡吉明, 张鉴清等. 基于高频电化学阻抗谱测试的涂层防护性能评价方法[J]. 腐蚀科学与防护技术, 2010, 22(4): 325-328)
[60] Zhang J Q. On EIS displays of zinc rich coatings[J]. J. Chin. Soc. Corros. Prot., 1996, 16(3): 175-180
[60] (张鉴清. 富锌涂层的电化学阻抗谱特性[J]. 中国腐蚀与防护学报, 1996, 16(3): 175-180)
[61] Li J F, Zheng Z Q, Zhang Z, et al. Electrochemical impendence spectroscopy of Al alloys during exfoliation corrosion[J]. J. Chin. Soc. Corros. Prot., 2005, 25(1): 48-52
[61] (李劲风, 郑子樵, 张昭等. 铝合金剥蚀过程的电化学阻抗谱分析[J]. 中国腐蚀与防护学报, 2005, 25(1): 48-52)
[62] Su J X, Zhang Z, Cao F H, et al. Review on the intergranular corrosion and exfoliation corrosion of aluminum alloys[J]. J. Chin. Soc. Corros. Prot., 2005, 25(3): 187-192
[62] (苏景新, 张昭, 曹发和等. 铝合金的晶间腐蚀与剥蚀[J]. 中国腐蚀与防护学报, 2005, 25(3): 187-192)
[63] Leng Y J, Cheng S A, Zhang J Q, et al. Electrochemical impedance spectroscopy of metal hydride electrode and its mathematical model[J]. Acta Phys.-Chim. Sin., 1997, 13(10): 890-897
[63] (冷拥军, 成少安, 张鉴清等. 贮氢电极电化学阻抗谱及其数学模型[J]. 物理化学学报, 1997, 13(10): 890-897)
[64] Yuan A B, Cheng S A, Zhang J Q, et al. Electrochemical impedance spectroscopy of porous nickel electrode and its mathematical model[J]. Acta Phys.-Chim. Sin., 1998, 14(9): 804-810
[64] (袁安保, 成少安, 张鉴清等. 粉末多孔镍电极电化学阻抗谱及其数学模型[J]. 物理化学学报, 1998, 14(9): 804-810)
[65] Bertocci U, Huet F. Noise analysis applied to electrochemical systems[J]. Corrosion, 1995, 51(2): 131-144
[66] Budevski E, Obretenov W, Bostanov W, et al. Noise analysis in metal deposition-expectations and limits[J]. Electrochim. Acta, 1989, 34(8): 1023-1029
[67] Okada T. A theoretical analysis of the electrochemical noise during the induction period of pitting corrosion in passive metals:Part 2.The current noise associated with the halide nucleus formation in the passive film[J]. J. Electroanal. Chem., 1991, 297(2): 361-375
[68] Gabrielli C, Keddam M. Review of applications of impedance and noise analysis to uniform and localized corrosion[J]. Corrosion, 1992, 48(10): 794-811
[69] Ochoa E G, Sánchez J G, Corvo F, et al. Application of electrochemical noise to evaluate outdoor atmospheric corrosion of copper after relatively short exposure periods[J]. J. Appl. Electrochem. 2008, 38(10): 1363-1368
[70] Shi Y Y, Zhang Z, Cao F H, et al. Dimensional analysis applied to pitting corrosion measurements[J]. Electrochim. Acta, 2008, 53(6): 2688-2698
[71] Shi Y Y, Zhang Z, Su J X, et al. Electrochemical noise study on 2024-T3 aluminum alloy corrosion in simulated acid rain under cyclic wet-dry condition[J]. Electrochim. Acta, 2006, 51(23): 4977-4986
[72] Li J, Zhao L, Li B W, et al. Electrochemical noise analysis of 304 stainless steel pitting corrosion in ferric chloride solution[J]. J. Chin. Soc. Corros. Prot., 2012, 32(3): 235-240
[72] (李季, 赵林, 李博文等. 304不锈钢点蚀的电化学噪声特征[J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240)
[73] Hu L H, Du N, Wang M F, et al. Monitoring the initial pitting behavior of 1Cr18Ni9Ti stainless steel by electrochemical noise and electrochemical impedance spectroscopy[J]. J. Chin. Soc. Corros. Prot., 2007, 27(4): 233-237
[73] (胡丽华, 杜楠, 王梅丰等. 电化学噪声和电化学阻抗谱监测 1Cr18Ni9Ti不锈钢的初期点蚀行为[J]. 中国腐蚀与防护学报, 2007, 27(4): 233-237)
[74] Lin C, Wang F P, Li X G. The progress of research methods on atmospheric corrosion[J]. J. Chin. Soc. Corros. Prot., 2004, 24(4): 249-256
[74] (林翠, 王凤平, 李晓刚. 大气腐蚀研究方法进展[J]. 中国腐蚀与防护学报, 2004, 24(4): 249-256)
[75] Mansfeld F, Kenkel J V. Electrochemical monitoring of atmospheric corrosion phenomenon[J]. Corros. Sci., 1976, 16(3): 111-112
[76] Zhen L Q, Kuai X M, Cao C N, et al. An intellegent atmosphere corrosion monitor[J]. Corros. Sci. Prot. Technol., 1994, 6(2): 184-187
[76] (郑立群, 蒯晓明, 曹楚南等. ACM智能大气腐蚀监测仪的研制[J]. 腐蚀科学与防护术, 1994, 6(2): 184-187)
[77] Cao X L, Xiao Y D, Lu Y, et al. Research of environmental sensitivity of Cu/Fe galvanic cell[J]. Equip. Env. Eng., 2006, 3(4): 20-26
[77] (曹献龙, 萧以德, 卢颖等. Cu/Fe双电极原电池对环境敏感性的研究[J]. 装备环境工程, 2006, 3(4): 20-26)
[78] Wohltjen H, Dessy R. Surface acoustic wave probe for chemical analysis, I introduction and instrument description[J]. Anal. Chem., 1979, 51(9): 1458-1464
[79] Lu C, Czanderna A W. Application of Piezoelectric Quartz Microbalance [M]. New York: Elesevier, 1984
[80] Konash P L, Bastiaans G J. Piezoelectric crystals as detectors in liquid chromatography[J]. Anal. Chem., 1980, 52(12): 1929-1931
[81] Nomura T, Iijima M. Electrolytic determination of nanomolar concentrations of silver in solution with a piezoelectric quartz crystal[J]. Anal. Chim. Acta, 1981, 131(1): 97-102
[82] O'Sullivan C K, Guilbault G G. Commercial quartz crystal microbalances-theory and Applications[J]. Biosens. Bioelectron., 1999, 14: 663-670
[83] Gabrielli C, Keddam M, Torresi R. Calibration of the electrochemical quartz crystal microbalance[J]. J. Electrochem. Soc., 1991, 138(9): 2657-2660
[84] Gu N Y, Niu L, Dong S J. Simultaneous determination of both the calibration constant in an electrochemical quartz crystal microbalance and the active surface area of a polycrystalline gold electrode[J]. Electrochem. Commun., 2000, 2(1): 48-50
[85] Qiu Y Y, Wang D H, Gan F X. Review on the application of quartz crystal microbalance in the research of metal corrosion[J]. Corros. Sci. Prot. Technol., 2002, 14(1): 38-41
[85] (仇银燕, 汪的华, 甘复兴. 石英晶体微天平在金属腐蚀研究中的应用[J]. 腐蚀科学与防护技术, 2002, 14(1): 38-41
[86] Kleber C, Hilfrich U, Schreiner M. In situ QCM and TM-AFM investigations of the early stages of degradation of silver and copper surfaces[J]. Appl. Surf. Sci., 2007, 253(7): 3712-3721
[87] Gil H, Leygraf C. Initial atmospheric corrosion of copper induced by carboxylic acids[J]. J. Electrochem. Soc., 2007, 154(11): C611-C617
[88] Yan C W, He Y F, Lin H C, et al. Atmospheric corrosion of copper at initial stage in air containing sulfur dioxide[J]. Chin. J. Nonferrous Met., 2000, 10(5): 645-648
[88] (严川伟, 何毓番, 林海潮等. 铜在含SO2大气中的腐蚀初期规律和机理[J]. 中国有色金属学报, 2000, 10(5): 645-648)
[89] Qu Q, Yan C W, Wan Y, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc[J]. Corros. Sci., 2002, 44(12): 2789-2803
[90] Dai Z X, Gan F X, Wang D H, et al. EQCM study on the filming kinetics of natural corrosion inhibitors on iron[J]. J. Chin. Soc. Corros. Prot., 1998, 18(4): 251-256
[90] (戴忠旭, 甘复兴, 汪的华等. 用EQCM研究中性介质中铁缓蚀剂的成膜动力学[J]. 中国腐蚀与防护学报, 1998, 18(4): 251-256)
[91] Luo T Y, Wei X Q, Huang W M. Application of ESEM in microstructure analysis of explosive[J]. Equip. Env. Eng., 2010, 7(1): 61-63
[91] (罗天元, 魏小琴, 黄文明. 环境扫描电镜在火炸药微观形态分析中的应用[J]. 装备环境工程, 2010, 7(1): 61-63)
[92] Vera R, Delgado D, Rosales B M. Effect of atmospheric pollutants on the corrosion of high power electrical conductors-Part 2.pure copper[J]. Corros. Sci., 2007, 49(5): 2329-2350
[93] Vera R, Delgado D, Rosales B M. Effect of unusually elevated SO2 atmospheric content on the corrosion of high power electrical conductors-Part 3. pure copper[J]. Corros. Sci., 2008, 50(4): 1080-1098
[94] Chen J S. In-situ electrochemical scanning tunneling microscopy study of dealloying and stress corrosion cracking of Cu-Au alloys [D]. Berkeley: University of California, 1992
[95] Kologo S, Eyraud M, Bonou L, et al. Voltametry and EQCM study of copper oxidation in acidic solution in presence of chloride ions[J]. Electrochim. Acta, 2007, 52(9): 3105-3113
[96] Wadsak M, Aastrup T, Wallinder I O, et al. Multianalytical in situ investigation of the initial atmospheric corrosion of bronze[J]. Corros. Sci., 2002, 44(4): 791-802
[1] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[2] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[3] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[4] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[5] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[6] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[7] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[8] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[9] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[10] 王力, 郭春云, 肖葵, 吐尔逊·斯拉依丁, 董超芳, 李晓刚. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[11] 和佳乐, 王菊琳. 初始pH值和Cl-浓度对CuCl水解的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.
[12] 王振华, 白杨, 马晓, 邢少华. 钛合金和铜合金管路电偶腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[13] 宋久龙, 陈文革, 雷楠楠. T2铜及QCr0.5铜合金无铬复配钼酸盐钝化研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 210-218.
[14] 郭娜, 类延华, 刘涛, 常雪婷, 尹衍升. 植酸水溶液中聚吡咯涂层在Cu基体上的制备及其在腐蚀防护中的应用[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
[15] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.