Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (4): 359-365    DOI: 10.11902/1005.4537.2013.160
  论文 本期目录 | 过刊浏览 |
天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响
聂鸳鸳1, 段继周2, 杜敏1, 侯保荣2
1. 中国海洋大学化学化工学院 青岛 266100; 2. 中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater
NIE Yuanyuan1, DUAN Jizhou2, DU Min1, HOU Baorong2
1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; 2. Key Laboratory of Marine Environmental Corrosion and Biological Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
全文: PDF(1270 KB)   HTML
摘要: 利用荧光显微观察技术选择临界使用浓度的NaN3,分别在O2及N2气氛下采用循环伏安及电化学阻抗技术研究其氧还原过程的电化学行为。结果表明,不锈钢表面的生物膜能够加大还原峰电流密度值,当使用临界浓度的NaN3处理不锈钢试样后,还原峰值明显减小,且峰电位均负移。微生物膜能够促进电子传递给最终电子受体O2,同时降低不锈钢材料发生腐蚀的可能性。由此推测,天然海水中,316L不锈钢表面微生物膜改变了传统阴极氧还原的电子传递途径,即加速了O2作为最终电子受体的电子传递过程,催化了O2的还原;同时,还能够抑制不锈钢材料的腐蚀。
关键词 天然海水316L不锈钢NaN微生物膜细胞色素c氧化酶氧还原    
Abstract:The influence of sodium azide NaN3 on cathodic oxygen reduction induced by microbe-assisted catalysis on the surface of 316LSS in seawater was studied in order to reveal the possible use of sodium azide (NaN3) as an agent to inhibit the activity of cytochrome c oxidase in microbial respiration. For such action, the adopted critical concentration of NaN3 was evaluated by fluorescence microscopic technology, and cyclic voltammograms and AC impedance were used to study the variations of electrochemical properties of the electrodes in seawater aerated with oxygen and nitrogen atmosphere respectively. Results showed that biofilm on the surface of the stainless steel could increase the intensity of reduction peak current density; however, it decreased obviously when stainless steel samples were disposed with NaN3, meanwhile, the peak potentials shifted negatively. According to the results of AC impedance, microbial respiration could directly promote the transfer of electrons to the final electron acceptor (oxygen); simultaneously reduce the tendency to corrosion of the stainless steel. It was suggested that the microbial adhesion on 316L stainless steel could change the traditional way of electron transfer of cathodic oxygen reduction in natural seawater, accelerating the transfer of electron to oxygen and finally catalyzing the reduction of oxygen.
Key wordsseawater    316L stainless steel    NaN    biofilm    cytochrome c oxidase    oxygen reduction
收稿日期: 2013-09-18     
ZTFLH:  TG172.5  
基金资助:国家自然科学基金项目 (40976046) 和中国科学院重要方向项目 (KZCX2-EW-205) 资助
通讯作者: 通讯作者:段继周,E-mail:duanjz@ms.qdio.ac.cn     E-mail: duanjz@ms.qdio.ac.cn
作者简介: 聂鸳鸳,女,1988年生,硕士生,研究方向为材料结构表征及分析方法

引用本文:

聂鸳鸳, 段继周, 杜敏, 侯保荣. 天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 359-365.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.160      或      https://www.jcscp.org/CN/Y2014/V34/I4/359

[1] Wang Q Z, Du M. Marine Corrosion and Protection Technology [M]. Qingdao: Ocean University of Qingdao Press, 2001 (王庆璋, 杜敏. 海洋腐蚀与防护技术 [M]. 青岛: 青岛海洋大学出版社, 2001)
[2] Sun R, Zhang D, Zhang S T, et al. Research development on cathodic oxygen reduction on steel in seawater [J]. Corros. Sci. Prot. Technol., 2009, 21(1): 58-61 (孙蓉, 张盾, 张胜涛等. 钢铁材料在海水中阴极氧还原反应研究进展 [J]. 腐蚀科学与防护技术, 2009, 21(1): 58-61)
[3] Erable B, Vandecandelaere I, Faimali M, et al. Marine aerobic biofilm as biocathode catalyst [J]. Bioelectrochemistry, 2010, 78(1): 52-
[4] Bergel A, Feron D, Mollica A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm [J]. Electrochem. Commun., 2005, 7(9): 900-904
[5] Scotto V, Cintio R D, Marcenaro G. The influence of marine aerobic microbial film on stainless steel corrosion behaviour [J]. Corros. Sci., 1985, 25: 185-194
[6] Xu F L. The foundational investigation of the marine electro-active biofilms and the application in the microorganism fuel cells [D]. Qingdao: Institute of Oceanology of the Chinese Academy of Sciences, 2009 (许凤玲. 海洋生物膜的电活性及其在微生物燃料电池中的应用基础研究 [D]. 青岛: 中国科学院海洋研究所, 2009)
[7] Johnsen R, Bardal E. Cathodic properties of different stainless steel in natural seawater [J]. Corrosion, 1985, 41(5): 296-302
[8] Molica A, Trevis A. Correlation between the formation of a primary film and the modification of the cathodic surface steel in seawater [A]. Proc. 4th Int. Cong. Marine Corros. Foul. [C]. Antibes, 1976: 351
[9] Iken H, Etcheverry L, Bergel A, et al. Local analysis of oxygen reduction catalysis by scanning vibrating electrode technique: a new approach to the study of biocorrosion [J]. Electrochim. Acta, 2008, 54(1): 60-65
[10] Cournet A, Berge M, Roques C, et al. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa [J]. Electrochim. Acta, 2010, 55(17): 4902-4908
[11] Faimali M, Chelossi E, Garaventa F, et al. Evolution of oxygen reduction current and biofilm on stainless steels cathodically polarised in natural aerated seawater [J]. Electrochim. Acta, 2008, 54(1): 148-153
[12] Scotto V, Alabiso G, Marcenaro G. An example of microbiologically influenced corrosion-the behavior of atainless-steels in natural seawater [J]. Bioelectroch. Bioener., 1986, 16(2): 347-355
[13] Mollica A. Biofilm and corrosion on active passive alloys in seawater [J]. Int. Biodeter. Biodegr., 1992, 29(3/4): 213-229
[14] Cournet A, Delia M L, Bergel A, et al. Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive [J]. Electrochem. Commun., 2010, 12(4): 505-508
[15] Dexter S C, Gao G Y. Effect of seawater biofilms corrosion potential and oxygen reduction of stainless steel [J]. Corrosion, 1988, 44(10): 717-723
[16] Lai M E, Bergel A. Electrochemical reduction of oxygen on glassy carbon: catalysis by catalase [J]. Electroanal. Chem., 2000, 494(1): 30-40
[17] Scotto V, Lai M E. The ennoblement of stainless steel in seawater: a likely explanation coming from the field [J]. Corros. Sci., 1998, 40: 1007-1018
[18] Beech I B, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals [J]. Current. Opinion. Biotechnol., 2004, 15: 181-183
[19] Potekhina J S, Sherisheva N G, Povetkina L P, et al. Role of microorganisms in corrosion inhibition of metals in aquatic habitats [J]. Appl. Microbiol. Biotechnol., 1999, 52: 639-646
[20] Wang J Y, Zhu S G, Xu C F, et al. Biochemistry [M]. Beijing: Higher Education Press, 2008 (王镜岩, 朱圣庚, 徐长法等. 生物化学 [M]. 北京: 高等教育出版社, 2008)
[21] Pires L, Sachsenheimer K, Kleintschek T, et al. Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor [J]. Biosens. Bioelectron., 2013, 47: 157-163
[22] Xiong C, Guo H L, Chen X Y, et al. The application of optical and fluorescent microscope in detection of cell apoptosis [J]. J. Tongji Med. Univ., 1998, 16(2): 68-72 (熊琛, 郭怀兰, 陈绪云等. 光学及荧光显微镜在细胞凋亡检测中的应用 [J]. 同济医科大学学报, 1998, 16(2): 68-72)
[23] Liu B, Duan J Z, Hou B R. Microbiology influenced corrosion of 316LSS by marine biofilms in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 48-53 (刘彬, 段继周, 侯保荣. 天然海水微生物膜对316L不锈钢腐蚀行研究 [J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53)
[24] Bonnel A, Dabosi F, Deslouis C. et al. Corrosion study of a carbon steel in neutral chloride solutions by impedance techniques [J]. Electrochem. Soc., 1983, 130(4): 753-756
[25] Wang J, Li X B, Wang W. The effect of microorganism attachment on the open-circuit-potential of passive metals in seawater [J]. J. Chin. Soc. Corros. Prot., 2004, 24(5): 262-266 (王佳, 李相波, 王伟. 海水环境中微生物附着对钝性金属开路电位的影响 [J]. 中国腐蚀与防护学报, 2004, 24(5): 262-266)
[1] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[2] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[3] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.
[4] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[5] 王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[6] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[7] 丁祥彬,孙华,俞国军,周兴泰. Hastelloy N合金和316L不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 543-548.
[8] 陈启萌,张俊喜,原徐杰,戴念维. 外加交流电场对薄液膜中氧扩散的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 549-555.
[9] 张志明,彭青娇,王俭秋,韩恩厚,柯伟. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
[10] 陈宇, 陈旭, 刘彤, 王冠夫, 王彦亮. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 137-143.
[11] 常钦鹏, 陈友媛, 宋芳, 彭涛. B30铜镍合金和316L不锈钢在热泵系统中的耐腐蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[12] 檀玉, 梁可心, 张胜寒. 光电化学法研究316L不锈钢在高温水中生成氧化膜的半导体性质[J]. 中国腐蚀与防护学报, 2013, 33(6): 491-495.
[13] 杜向前, 段继周, 翟晓凡, 栾鑫, 张杰, 侯保荣. 铁还原细菌Shewanella algae生物膜对316L不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[14] 彭青姣,张志明,王俭秋,韩恩厚,柯伟. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 217-222.
[15] 刘彬,段继周,侯保荣. 天然海水中微生物膜对316L不锈钢腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.